Aircraft Engine Construction - turbofan engine

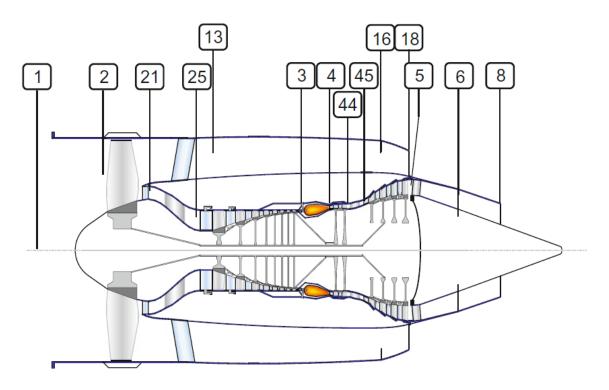

Elaborated by phd Robert JAKUBOWSKI, Rzeszow University of Technology

Table of Contents

IDEAL TURBOFAN ENGINE	1
TURBOFAN ENGINE WITH LOSSES	
TURBOJET ENGINE WITH LOSSES	
TURBOFAN ENGINE PERFORMANCE CALCULATION	17
TURBOFAN ENGINE WITH CONVERGENT NOZZLES	
Performance parameters calculation for incomplete expansion in propelling nozzles	25

IDEAL TURBOFAN ENGINE

En example of turbofan engin calculation is presented. The assumption is that external and internal engine nozzles expanison is to ambient pressure

Given

Flight conditions: T0=217 K, P0=22 kPa, M0=0.88, bypass ratio 9, fan pressure ratio 1.55, compressor pressure ratio 22, Turbine inlet temperature Tt4=1600 K, mass flow m=60 kg/s.

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,

```
For combustion in combustor cpB=1200 J/kg/K,
```

Fuel heat value: FHV=43 MJ/kg

Flight Mach No

```
MO = 0.8800
```

Air Mass flow [kg/s]

m0 = 60

Bypass ratio

BPR = 9

Turbine inlet temperature [K]

Tt4 = 1600

Fan pressure ratio

FPR = 1.5500

Compressor pressure ratio

CPR = 22

Ambient conditions

Static temperature [K]

T0 = 217

Static pressure [Pa]

P0 = 22000

TURBOFAN ENGINE CALCULATION

Section 0

Total temperature [K]

$$T_{\rm t0} = T_0 \Big(1 + \frac{k-1}{2} M_0^2 \Big)$$

Tt0_id = 250.6090

Total pressure [Pa]

$$P_{t0} = P_0 \left(1 + \frac{k-1}{2} M_0^2 \right)^{\frac{k}{k-1}}$$

Pt0_id = 3.6417e+04

Speed of sound [m/s]

 $a_0 = \sqrt{k * R * T_0}$ - like for ideal engine

a0 = 295.2805

Flight speed [m/s]

 $V_0 = M_0 * a_0$ - like for ideal engine

V0_id = 259.8469

Section 2 Inlet exit

Total temperature [K]

 $T_{t2} = T_{t0}$ - like for ideal engine

 $Tt2_id = 250.6090$

Total pressure [Pa]

$$P_{t2} = P_{t0}$$

Pt2_id = 3.6417e+04

Section 25/13 - Fan outlet

Total temperature [K]

$$T_{t25} = T_{t13} = T_{t2} * \text{FPR}^{\frac{k-1}{k}}$$

Tt25_id = 284.0384

Tt13_id = 284.0384

Total pressure [Pa]

 $P_{t25} = P_{t13} = P_{t2} * FPR$

Pt25_id = 5.6446e+04

Pt13_id = 5.6446e+04

FAN

Fan work [J/kg]

 $W_F = c_p * (T_{t25} - T_{t2})$

WF_id = 3.3597e+04

Fan power [W]

 $P_F = m_0 * W_F$

PC_id = 2.0158e+06

STREAM SPLIT

Internal duct mass flow [kg/s]

 $m_{25} = m_0 * \frac{1}{1 + \text{BPR}}$

m25 = 6

External duct mass flow [kg/s]

$$m_{13} = m_0 * \frac{\text{BPR}}{1 + \text{BPR}}$$
$$m_{13} = 54$$

INTERNAL DUCT / CORE ENGINE

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

 $T_{t3} = T_{t25} * \text{CPR}^{\frac{k-1}{k}}$

Tt3_id = 686.9520

Total pressure [Pa]

 $P_{t3} = P_{t25} * CPR$

Pt3_id = 1.2418e+06

COMPRESSOR

Compressor work [J/kg]

 $W_C = c_p * (T_{t3} - T_{t25})$

WC_id = 4.0493e+05

Compressor power [W]

 $P_C = m_{25} * W_C$

PC_id = 2.4296e+06

Section 4 Burner outlet / Turbine inlet

Total temperature [K]

T_{t4}

 $Tt4_id = 1600$

Total pressure [Pa]

 $P_{t4} = P_{t3}$

Pt4_id = 1.2418e+06

BURNER

Fuel-air ratio

$$f_B = \frac{m_f}{m_{25}} = c_{\text{pB}} * \frac{T_{\text{t4}} - T_{\text{t3}}}{\text{FHV} * \eta_B}$$
$$fB_id = 0.0255$$
Fuel mass flow [kg/s]

 $m_{\rm fB} = m_{25} * f_B$

 $mfB_id = 0.1529$

Section 45 High Pressure Turbine outlet

Total temperature [K]

$$T_{t45} = T_{t4} - \frac{W_C}{(1+f_B) * c_{\text{pt}}}$$

Tt45_id = 1.2625e+03

Total pressure [Pa]

$$P_{t45} = P_{t4} \left(\frac{T_{t45}}{T_{t4}}\right)^{\frac{\mathrm{kt}}{\mathrm{kt}-1}}$$

Pt45_id = 4.7796e+05

HPT Pressure ratio

$$HPT PR = \frac{P_{t4}}{P_{t45}}$$

 $HPT_PR_ID = 2.5981$

Section 5 Low Pressure Turbine outlet

Total temperature [K]

$$T_{t5} = T_{t45} - \frac{(1 + BPR)W_F}{(1 + f_B) * c_{pt}}$$

Tt5_id = 982.4915

Total pressure [Pa]

$$P_{t5} = P_{t45} \left(\frac{T_{t5}}{T_{t45}}\right)^{\frac{\mathrm{kt}}{\mathrm{kt}-1}}$$

Pt5_id = 1.7397e+05

LPT Pressure ratio

LPT PR =
$$\frac{P_{t45}}{P_{t5}}$$

 $LPT_PR_ID = 2.7474$

Section 8 Core Engine Nozzle outlet

Total temperature [K]

 $T_{t9} = T_{t5}$

Tt9_id = 982.4915

Total pressure [Pa]

 $P_{t9} = P_{t5}$

Pt9_id = 1.7397e+05

Static pressure [Pa]

$$P_9 = P_0$$

P9_id = 22000

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{\mathrm{kt}-1}{\mathrm{kt}}}$$

T9_id = 588.1718

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{t9}}{T_9} - 1\right) * \frac{2}{\mathrm{kt} - 1}}$$

M9_id = 2.0157

Speed of sound [m/s]

 $a_9 = \sqrt{\mathrm{kt} * \mathrm{Rt} * T_9}$

a9_id = 476.2960

Jet speed [m/s]

 $V_9 = M_9 * a_9$

Section 19 External Engine Nozzle outlet

Total temperature [K]

 $T_{t19} = T_{t13}$

Total pressure [Pa]

 $P_{t19} = P_{t13}$

Pt19_id = 5.6446e+04

Static pressure [Pa]

 $P_{19} = P_0$

P19_id = 22000

Static temperature [K]

$$T_{19} = T_{t19} * \left(\frac{P_{19}}{P_{t19}}\right)^{\frac{k-1}{k}}$$

 $T19_id = 217.0000$

Jet stream Mach No

$$M_{19} = \sqrt{\left(\frac{T_{119}}{T_{19}} - 1\right) * \frac{2}{k-1}}$$

 $M19_{id} = 1.2428$

Speed of sound [m/s]

$$a_{19} = \sqrt{k * R * T_{19}}$$

a19_id = 295.2805

Jet speed [m/s]

 $V_{19} = M_{19} * a_{19}$

V19_id = 366.9880

TURBOFAN ENGINE PERFORMANCE CALCULATION

Thrust [N]

 $T = m_{25} * (1 + f_B) * V_9 + m_{25} * BPR * V_{19} - m_{25} * (1 + BPR) * V_0$

T_id = 1.0134e+04

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = \frac{(1 + f_B) * V_9 + BPR * V_{19} - (1 + BPR) * V_0}{1 + BPR}$$

ST_id = 168.8965

Specific fuel consumption [kg/N/s]

$$SFC = \frac{m_{fB}}{T} = \frac{f_B}{(1 + BPR) * ST}$$

SFC_id = 1.5086e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

SFC_id = 0.0543

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 + \text{BPR} * V_{19}^2 - (1+\text{BPR})V_0^2}{2 * f_B * \text{FHV}}$$

 $etha_th_id = 0.6764$

Propulsive efficiency

$$\eta_{P} = \frac{2 * V_{0} * \text{ST} * (1 + \text{BPR})}{(1 + f_{B}) * V_{9}^{2} + \text{BPR} * V_{19}^{2} - (1 + \text{BPR})V_{0}^{2}}$$

etha_p_id = 0.5922

Overall efficiency

$$\eta_o = \frac{V_0 * \text{ST} * (1 + \text{BPR})}{f_B * \text{FHV}} = \eta_{\text{th}} * \eta_p$$

etha_o_id = 0.4006

Temperature, pressure vs engine sections plot

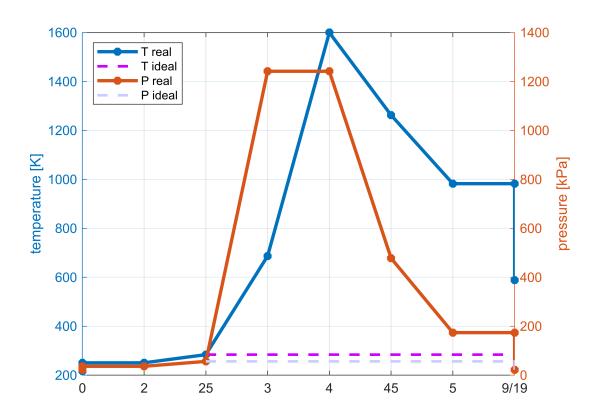


Tabela = 12×3 table

	Section	T ideal [K]	P ideal [kPa]
1	'0'	217	22
2	't0'	251	36.4168
3	't2'	251	36.4168

	Section	T ideal [K]	P ideal [kPa]
4	't25'	284	56.4460
5	't3'	687	1.2418e+03
6	't4'	1600	1.2418e+03
7	't45'	1263	477.9622
8	't5'	982	173.9696
9	't9'	982	173.9696
10	'9'	588	22
11	't19'	284	56.4460
12	'19'	217	22

Performance of ideal turbofan engine

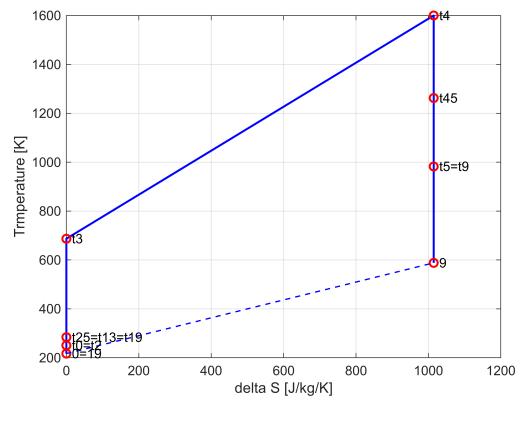
Tabela	=	9x3	table
Tabera	_	J~J	LaDIE

	Parameter	Unit	Ideal turbofan
1	'Thrust'	'kN'	10.1338
2	'Specific Thrust'	'N*s/kg'	168.8965
3	'Fuel consumption'	'kg/s'	0.1529
4	'Specific fuel consump'	'kg/N/h'	0.0543
5	'therm. efficiency'	' <u>-</u> '	0.6764
6	'prop. efficiency'	' <u>-</u> '	0.5922
7	'overall efficiency'	' <u>-</u> '	0.4006
8	'V9'	'm/s'	960.0792
9	'V19_id'	'm/s'	366.9880

CONCLUSIONS

In the ideal turbofan

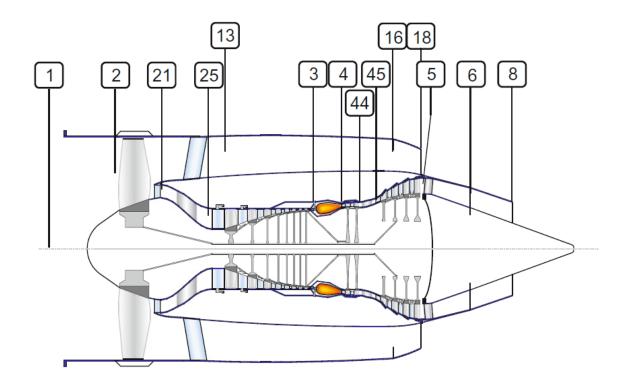
- Temperature and pressure rise in the fan and compressor and drop in turbines is isentropic
- Specific thrust is lower than in the turbojet engine (see turbojet engine calculation)
- Higher temperature after compressor causes lower fuel consumption of the real engine TIT (turbine inlet temperature) is the same in both cases
- Lower total temperature in the nozzle inlet and higher static temperature in the nozzle outlet causes lower outlet flow velocity and by this way lower thrust and specific thrust of real jet engine
- Specific fuel consumption is higher due to lwer thrust and thermal and overall efficiences are lower in real engine


Temperature - entropy plot

Entropy growth is calculated from equations:

Combustor entropy grow [J/kg/K] :

$$\Delta s_B = c_{\rm pB} * \ln \frac{T_{\rm t4}}{T_{\rm t3}}$$


dS_B = 1.0146e+03

CONCLUSIONS

TURBOFAN ENGINE WITH LOSSES

Calculation of a turbofan engin with losses of the same work parameters like an ideal turbofan. The assumption is that an external and internal engine nozzles expanison is to ambient pressur. The losses coefcients and efficiences are specified below.

Given

Flight conditions: T0=217 K, P0=22 kPa, M0=0.88, bypass ratio 9, fan pressure ratio 1.55, compressor pressure ratio 22, Turbine inlet temperature Tt4=1600 K, mass flow m=60 kg/s.

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,

For combustion in combustor cpB=1200 J/kg/K,

Fuel heat value: FHV=43 MJ/kg

Engine losses coefficients:

inlet pressure losses coefficient σ_{IN} 0.98, burner pessure losses coefficient σ_B 0.98, internal nozzle pressure losses coefficient $\sigma_{N \text{ int}}$ 0.97, external nozzle pressure losses coefficient $\sigma_{N \text{ ext}}$ 0.96, fun efficiency η_F 0,91, compressor efficiency η_C 0.83, high pressure turbine (HPT) efficiency η_{HPT} 0.88, low pressure turbine (LPT) efficiency η_{LPT} 0.9, burner efficiency η_B 0.98, mechanical efficiency low pressure spool $\eta_{M \text{ LP}}$ = 0.995, mechanical efficiency high pressure spool $\eta_{M \text{ HP}}$ = 0.99.

Flight Mach No

M0 = 0.8800

Air Mass flow [kg/s]

m0 = 60

Bypass ratio

BPR = 9

Turbine inlet temperature [K]

Tt4 = 1600

Fan pressure ratio

FPR = 1.5500

Compressor pressure ratio

CPR = 22

Ambient conditions

Static temperature [K]

T0 = 217

Static pressure [Pa]

P0 = 22000

TURBOJET ENGINE WITH LOSSES Section 0

Total temperature [K]

 $T_{\rm t0} = T_0 \Big(1 + \frac{k-1}{2} \, M_0^2 \Big) \;$ - like for ideal engine

Tt0 = 250.6090

Total pressure [Pa]

 $P_{t0} = P_0 \left(1 + \frac{k-1}{2}M_0^2\right)^{\frac{k}{k-1}}$ - like for ideal engine

Pt0 = 3.6417e+04

Speed of sound [m/s]

 $a_0 = \sqrt{k * R * T_0}$ - like for ideal engine

a0 = 295.2805

Flight speed [m/s]

 $V_0 = M_0 * a_0$ - like for ideal engine

V0 = 259.8469

Section 2 Compressor inlet

Total temperature [K]

$$T_{t2} = T_{t0}$$
 - like for ideal engine

Tt2 = 250.6090

Total pressure [Pa]

 $P_{t2} = \sigma_{IN} * P_{t0}$

Pt2 = 3.5688e+04

Section 25/13 - Fan outlet

Total temperature [K]

$$T_{t25} = T_{t13} = T_{t2} * \left(1 + \frac{\text{FPR}^{\frac{k-1}{k}} - 1}{\eta_F}\right)$$

Tt25 = 287.3446

Tt13 = 287.3446

Total pressure [Pa]

 $P_{t25} = P_{t13} = P_{t2} * FPR$

Pt25 = 5.5317e+04

FAN

Fan work [J/kg]

 $W_F = c_p * (T_{t25} - T_{t2})$

WF = 3.6919e+04

Fan power [W]

 $P_F = m_p * W_F$

PF = 2.2152e+06

STREAM SPLIT

Internal duct mass flow [kg/s]

 $m_{25} = m_0 * \frac{1}{1 + \text{BPR}}$

m25 = 6

External duct mass flow [kg/s]

$$m_{13} = m_0 * \frac{\text{BPR}}{1 + \text{BPR}}$$

m13 = 54

INTERNAL DUCT / CORE ENGINE

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

$$T_{t3} = T_{t25} * \left(1 + \frac{\operatorname{CPR}^{\frac{k-1}{k}} - 1}{\eta_C}\right)$$

Tt3 = 778.4332

Total pressure [Pa]

 $P_{t3} = P_{t25} * CPR$

Pt3 = 1.2170e+06

COMPRESSOR

Compressor work [J/kg]

$$W_C = c_p * (T_{t3} - T_{t25})$$

WC = 4.9354e+05

Compressor power [W]

 $P_C = m_{25} * W_C$

PC = 2.9613e+06

Section 4 Burner outlet / Turbine inlet

Total temperature [K]

 T_{t4}

Tt4 = 1600

Total pressure [Pa]

 $P_{t4} = \sigma_B * P_{t3}$

Pt4 = 1.1926e+06

BURNER

Fuel-air ratio

$$f_B = c_{\rm pB} * \frac{T_{\rm t4} - T_{\rm t3}}{\rm FHV * \eta_B}$$

fB = 0.0234

Fuel mass flow [kg/s]

 $m_{\rm fB} = m_{25} * f_B$ mfB = 0.1404

Section 45 High Pressure Turbine (HPT) outlet / Low Pressure Turbine (LPT) inlet

Total temperature [K]

$$T_{t45} = T_{t4} - \frac{W_C}{\eta_{M \text{ HP}} * (1 + f_B) * c_{\text{pt}}}$$

Total pressure [Pa]

$$P_{t45} = P_{t4} \left(\frac{\eta_{T \text{ HP}} + \frac{T_{t45}}{T_{t4}} - 1}{\eta_T} \right)^{\frac{\text{kt}}{\text{kt} - 1}}$$

$$Pt45 = 2.9034e+05$$

High pressure turbine pressure ratio

$$HPT PR = \frac{P_{t4}}{P_{t45}}$$

 $HPT_{PR} = 4.1077$

Section 5 LPT outlet / Nozzle inlet

Total temperature [K]

$$T_{t5} = T_{t45} - \frac{(1 + BPR)W_F}{\eta_{M LP} * (1 + f_B) * c_{pt}}$$

Tt5 = 873.7615

Total pressure [Pa]

$$P_{t5} = P_{t45} \left(\frac{\eta_{\text{LPT}} + \frac{T_{t5}}{T_{t45}} - 1}{\eta_{\text{LPT}}} \right)^{\frac{\text{kt}}{\text{kt} - 1}}$$

Pt5 = 7.2649e+04

Low pressure turbine pressure ratio

LPT PR = $\frac{P_{t45}}{P_{t5}}$ LPT_PR = 3.9965

Section 9 Core engine nozzle outlet / Internal duct nozzle outlet

 $T_{t9} = T_{t5}$

Tt9 = 873.7615

Total pressure [Pa]

 $P_{t9} = P_{t5} * \sigma_{N \text{ int}}$

Pt9 = 7.0470e+04

Static pressure [Pa]

 $P_9 = P_0$

P9 = 22000

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{kt-1}{kt}}$$

T9 = 654.5584

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{t9}}{T_9} - 1\right) * \frac{2}{\text{kt} - 1}}$$

M9 = 1.4246

Speed of sound [m/s]

 $a_9 = \sqrt{\text{kt} * \text{Rt} * T_9}$ a9 = 502.4571

Jet speed [m/s]

 $V_9 = M_9 * a_9$

V9 = 715.8240

Section 19 External Engine Nozzle outlet

Total temperature [K]

 $T_{t19} = T_{t13}$

Total pressure [Pa]

 $P_{t19} = \sigma_{N \text{ ext}} * P_{t13}$

Pt19 = 5.3104e+04

Static pressure [Pa]

 $P_{19} = P_0$

P19 = 22000

Static temperature [K]

$$T_{19} = T_{t19} * \left(\frac{P_{19}}{P_{t19}}\right)^{\frac{k-1}{k}}$$

T19 = 223.3870

Jet stream Mach No

$$M_{19} = \sqrt{\left(\frac{T_{t19}}{T_{19}} - 1\right) * \frac{2}{k-1}}$$

M19 = 1.1965

Speed of sound [m/s]

$$a_{19} = \sqrt{k * R * T_{19}}$$

a19 = 299.5946

Jet speed [m/s]

 $V_{19} = M_{19} * a_{19}$

V19 = 358.4562

TURBOFAN ENGINE PERFORMANCE CALCULATION

Thrust [N]

 $T = m_{25} * (1 + f_B) * V_9 + m_{25} * BPR * V_{19} - m_{25} * (1 + BPR) * V_0$

T = 8.1612e+03

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = \frac{(1 + f_B) * V_9 + BPR * V_{19} - (1 + BPR) * V_0}{1 + BPR}$$

ST = 136.0208

Specific fuel consumption [kg/N/s]

$$SFC = \frac{m_{fB}}{T} = \frac{f_B}{(1 + BPR) * ST}$$

SFC = 1.7200e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

SFC = 0.0619

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 + \text{BPR} * V_{19}^2 - (1+\text{BPR}) * V_0^2}{2 * f_B * \text{FHV}}$$

 $etha_th = 0.4998$

Propulsive efficiency

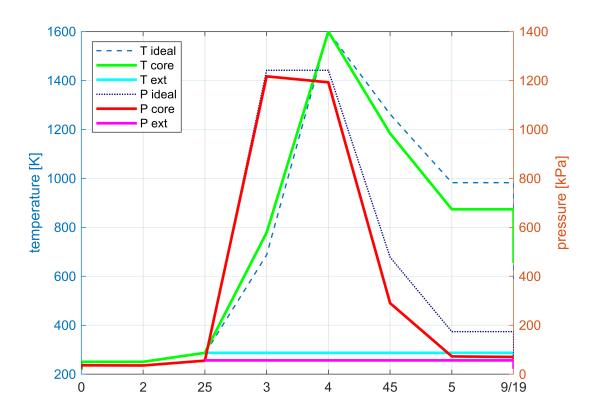
$$\eta_{P} = \frac{2 * V_{0} * \text{ST} * (1 + \text{BPR})}{(1 + f_{B}) * V_{9}^{2} + \text{BPR} * V_{19}^{2} - (1 + \text{BPR}) * V_{0}^{2}}$$

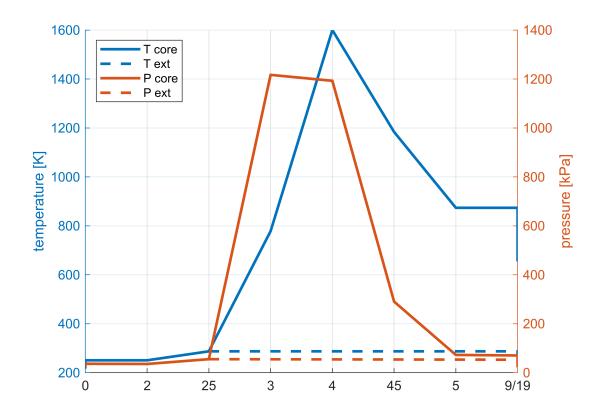
 $etha_p = 0.7030$

Overall efficiency

$$\eta_o = \frac{V_0 * \text{ST} * (1 + \text{BPR})}{f_B * \text{FHV}} = \eta_{\text{th}} * \eta_p$$
etha_o = 0.3513

Temperature, pressure vs engine sections plot




Tabela = 12×5 table

	Section	T ideal [K]	T real [K]	P ideal [kPa]	P real [kPa]
1	'0'	217	217	22	22
2	't0'	251	251	36.4168	36.4168
3	't2'	251	251	36.4168	35.6885

	Section	T ideal [K]	T real [K]	P ideal [kPa]	P real [kPa]
4	't25'	284	287	56.4460	55.3171
5	't3'	687	778	1.2418e+03	1.2170e+03
6	't4'	1600	1600	1.2418e+03	1.1926e+03
7	't45'	1263	1184	477.9622	290.3441
8	't5'	982	874	173.9696	72.6491
9	't9'	982	874	173.9696	70.4697
10	'9'	588	655	22	22
11	't19'	284	287	56.4460	53.1044
12	'19'	217	223	22	22

Performance comparison of real vs ideal turbofan engine

Tabe	Tabela = 11×4 table					
	Parameter	Unit	Ideal	real		
1	'Thrust'	'kN'	10.1338	8.1612		
2	'Specific Thrust'	'N*s/kg'	168.8965	136.0208		
3	'Fuel consumption'	'kg/s'	0.1529	0.1404		
4	'Specific fuel consump'	'kg/N/h'	0.0543	0.0619		
5	'therm. efficiency'	<u>.</u> .	0.6764	0.4998		
6	'prop. efficiency'	'-'	0.5922	0.7030		
7	'overall efficiency'	<u>.</u> .	0.4006	0.3513		
8	'V9'	'm/s'	960.0792	715.8240		
9	'V19'	'm/s'	366.9880	358.4562		
10	'HPT_PR'	<u>.</u> .	2.5981	4.1077		
11	'LPT_PR'	<u>.</u> .	2.7474	3.9965		

Tabela = 11×3 table

	Parameter	Unit	Value
1	'Thrust'	'kN'	8.1612
2	'Specific Thrust'	'N*s/kg'	136
3	'Fuel consumption'	'kg/s'	0.1404
4	'Specific fuel consump'	'kg/N/h'	0.0619
5	'therm. efficiency'	'-'	0.4998
6	'prop. efficiency'	'-'	0.7030
7	'overall efficiency'	'-'	0.3513
8	'V9'	'm/s'	716
9	'V19'	'm/s'	358
10	'HPT_PR'	'-'	4.1077
11	'LPT_PR'	'-'	3.9965

CONCLUSIONS

Real to ideal jet engine comparison shows

- Total pressure in engine sections is lower in real engine
- Total temperature after compressor is higher, but after turbine is lower in real engine

- Higher temperature after compressor causes lower fuel consumption of the real engine TIT (turbine inlet temperature) is the same in both cases
- Lower total temperature in the nozzle inlet and higher static temperature in the nozzle outlet causes lower outlet flow velocity and by this way lower thrust and specific thrust of real jet engine
- Specific fuel consumption is higher due to lwer thrust and thermal and overall efficiences are lower in real engine

Temperature - entropy plot

Entropy growth is calculated from equations:

Inlet entropy grow [J/kg/K] :

 $\Delta s_{\rm IN} = -R * \ln(\sigma_{\rm IN})$

dS_IN = 5.7982

Fan entropy grow [J/kg/K] :

$$\Delta s_F = c_p * \ln \frac{T_{125}}{T_{12}} - R * \ln(\text{FPR})$$

Compressor entropy grow [J/kg/K] :

$$\Delta s_C = c_p * \ln \frac{T_{t3}}{T_{t25}} - R * \ln(\text{CPR})$$

dS_C = 114.4548

Combustor entropy grow [J/kg/K] :

$$\Delta s_B = c_{\rm pB} * \ln \frac{T_{\rm t4}}{T_{\rm t3}} - R_t * \ln(\sigma_B)$$

dS_B = 870.4296

HPT entropy grow [J/kg/K] :

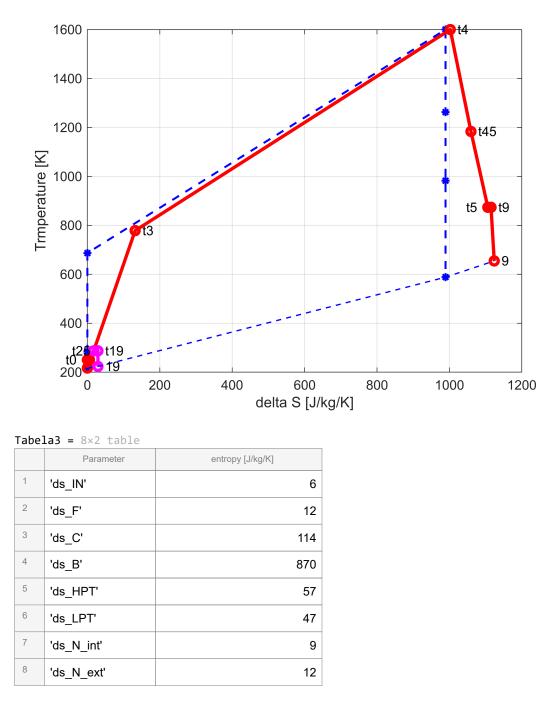
$$\Delta s_{\rm HPT} = c_{\rm pt} * \ln \frac{T_{\rm t45}}{T_{\rm t4}} - R_t * \ln \left(\frac{P_{\rm t45}}{P_{\rm t4}}\right)$$

dS_HPT = 57.0865

LPT entropy grow [J/kg/K] :

$$\Delta s_{\rm LPT} = c_{\rm pt} * \ln \frac{T_{\rm t5}}{T_{\rm t45}} - R_t * \ln \left(\frac{P_{\rm t5}}{P_{\rm t45}}\right)$$

dS_LPT = 46.6218


Core nozzle entropy grow [J/kg/K] :

 $\Delta s_{N \text{ int}} = -\text{Rt} * \ln(\sigma_{N \text{ int}})$

External nozzle entropy grow [J/kg/K] :

 $\Delta s_N \operatorname{ext} = -R * \ln(\sigma_N \operatorname{ext})$

dS_N_ext = 11.7159

TURBOFAN ENGINE WITH CONVERGENT NOZZLES

Maximum possible gas expansion in convergent nozzle is to critical pressure - speed of jet stream is equal speed of sound (M=1). Engine calculation for other components than nozzle looks like for the engine with full

expansion in the nozzle. Difference starts from nozzle paramethers calculation therefore the example presented below refers to the real engine calculation presented above.

Example of turbofan engine calculation with convergent nozzles of internal and external duct for flight condition and engine work paramethers like in example above.

All paramethers calculated to total section t19 and t9 are like above. Difference starts from static paramethers calculation in both sections.

Internal nozzle calculatios:

Total temperature in section 9

Tt9 = 873.7615

Total pressure in section 9

Pt9 = 7.0470e+04

Total to critical presure paramether calculation:

$$\beta = \left(\frac{k_t + 1}{2}\right)^{\frac{k_t}{k_t - 1}}$$

beta = 1.8506

Total pressure in internal nozzle to static ambient pressure calculation:

$$\frac{P_{t9}}{P_0} =$$

ans = 3.2032

Pt9/P0 is higher than β then full expansion in the convergent nozzle isn't possible. The critical pressure is available in the nozzle only (IE indext - incomplete expansion):

$$P_{9\,\text{IE}} = \frac{P_{t9}}{\beta} \quad [\text{Pa}]$$

P9_IE = 3.8079e+04

Static pressure in the nozzle exit

$$T_{9\,\text{IE}} = \frac{2 * T_{t9}}{k_t + 1}$$
 [K]

Secrion 9 density calculation:

$$\rho_{9\,\mathrm{IE}} = \frac{P_{9\,\mathrm{IE}}}{R_t * T_{9\,\mathrm{IE}}}$$

rho_9_IE = 0.1751 Jet speed in the propelling nozzle exit

$$V_{9\,\text{IE}} = a_9 = \sqrt{k_t * R_t * T_{9\,\text{IE}}}$$
 [m/s]

V9_IE = 537.8465

Speed of gas streem after expansion to ambient pressure outside the nozzle:

$$V_{9e} = V_{9 \text{ IE}} + \frac{(P_{9 \text{ IE}} - P_0)}{\rho_{9 \text{ IE}} * V_{9 \text{ IE}}}$$

V9e = 708.6057

Static temperaure in 9e

 $P_{9e} = P_0$

P9e = 22000

Static temperature in section 9e

$$T_{9e} = T_{t9} - \frac{V_{9e}^2}{2 * cp_e}$$

T9e = 659.1794

External nozzle calculatios:

Total temperature in section 19

Tt19 = 287.3446

Total pressure in section 19

Pt19 = 5.3104e+04

Total to critical presure paramether calculation in external nozzle (air):

$$\beta = \left(\frac{k+1}{2}\right)^{\frac{k}{k-1}}$$

beta = 1.8929

Total pressure in internal nozzle to static ambient pressure calculation:

$$\frac{P_{t19}}{P_0} =$$

ans = 2.4138

Pt19/P0 is higher than β then full expansion in the convergent nozzle isn't possible. The critical pressure is available in the external nozzle only (IE indext - incomplete expansion):

$$P_{19\,\text{IE}} = \frac{P_{t19}}{\beta} \quad [\text{Pa}]$$

P19_IE = 2.8054e+04

Static pressure in the nozzle exit

$$T_{19\,\text{IE}} = \frac{2 * T_{t19}}{k+1} \quad [\text{K}]$$

Secrion 9 density calculation:

 $\rho_{19\,\mathrm{IE}} = \frac{P_{19\,\mathrm{IE}}}{R * T_{19\,\mathrm{IE}}}$

 $rho_{19}IE = 0.4082$

Jet speed in the propelling nozzle exit

$$V_{19\,\text{IE}} = a_{19} = \sqrt{k * R * T_{19\,\text{IE}}}$$
 [m/s]
V19_IE = 310.1815

Speed of gas streem after expansion to ambient pressure outside the nozzle:

$$V_{19e} = V_{19 \text{ IE}} + \frac{(P_{19 \text{ IE}} - P_0)}{\rho_{19 \text{ IE}} * V_{19 \text{ IE}}}$$

V19e = 357.9940

Static temperaure in 9e

$$P_{19e} = P_0$$

P19e = 22000

Static temperature in section 9e

$$T_{19e} = T_{t19} - \frac{V_{19}^2}{2 * cp}$$

T19e = 223.5836

Performance parameters calculation for incomplete expansion in propelling nozzles

Thrust [N]

$$T = m_{25} * (1 + f_B) * V_{9e} + m_{25} * BPR * V_{19e} - m_{25} * (1 + BPR) * V_0$$

T_IE = 8.0920e+03

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = \frac{(1 + f_B) * V_{9e} + BPR * V_{19e} - (1 + BPR) * V_0}{1 + BPR}$$

ST_IE = 134.8661

Specific fuel consumption [kg/N/s]

 $SFC = \frac{m_{fB}}{T} = \frac{f_B}{(1 + BPR) * ST}$

SFC_IE = 1.7347e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

 $SFC_{IE} = 0.0624$

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_{9e}^2 + \text{BPR} * V_{19e}^2 - (1+\text{BPR}) * V_0^2}{2 * f_B * \text{FHV}}$$

 $etha_th_IE = 0.4931$

Propulsive efficiency

 $\eta_{p} = \frac{2 * V_{0} * \text{ST} * (1 + \text{BPR})}{(1 + f_{B}) * V_{9e}^{2} + \text{BPR} * V_{19e}^{2} - (1 + \text{BPR}) * V_{0}^{2}}$

 $etha_p_{IE} = 0.7065$

Overall efficiency

$$\eta_o = \frac{V_0 * \text{ST} * (1 + \text{BPR})}{f_B * \text{FHV}} = \eta_{\text{th}} * \eta_P$$

 $etha_o_{IE} = 0.3484$

	Parameter	Unit	CONV Nozzles	FULL EXPANS
1	'Thrust'	'kN'	8.0920	8.1612
2	'Specific Thrust'	'N*s/kg'	135	136
3	'Fuel consumption'	'kg/s'	0.1404	0.1404
4	'Specific fuel consump'	'kg/N/h'	0.0624	0.0619
5	'therm. efficiency'	<u>.</u> .	0.4931	0.4998
6	'prop. efficiency'	<u>.</u>	0.7065	0.7030
7	'overall efficiency'	<u>.</u> .	0.3484	0.3513
8	'V9'	'm/s'	538	716
9	'V9e'	'm/s'	709	716
10	'V19'	'm/s'	310	358
11	'V19e'	'm/s'	358	358

Performance comparisson of full expansion turbofan and turbofan with convergent nozzle

CONCLUSIONS:

Incomplete expansion in the engine propelling nozzle causes:

· Lower thrust and specific thrust than it is in full decompression mode

- Higher specific fuel consumption
- Additional entropy increas caused by jet decompression outside the nozzle

ENTROPY GROW FOR INCOIMPLET EXPANSION

Core nozzle entropy grow [J/kg/K] :

 $\Delta s_{N \text{ int}} = -\text{Rt} * \ln(\sigma_{N \text{ int}})$

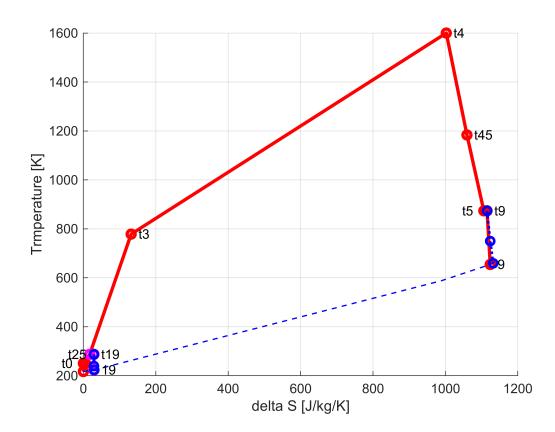
dS_N_int = 8.8332

Core nozzle entropy grow outside the nozzle [J/kg/K] :

$$\Delta s_{9-9e} = \mathrm{cp}_t \mathrm{ln}\left(\frac{T_{9e}}{T_9}\right) - \mathrm{Rt} * \mathrm{ln}\left(\frac{P_{9e}}{P_9}\right)$$

ds_9_9e = 8.0659

External nozzle entropy grow [J/kg/K] :


 $\Delta s_N \exp = -R * \ln(\sigma_N \exp)$

dS_N_ext = 11.7159

External nozzle entropy grow outside the nozzle [J/kg/K] :

$$\Delta s_{19-19e} = cp * \ln\left(\frac{T_{19e}}{T_{19}}\right) - R * \ln\left(\frac{P_{19e}}{P_{19}}\right)$$

ds_19_19e = 0.8493

Core nozzle entropy grow [J/kg/K] :

 Δs_N int = -Rt * ln(σ_N int)

dS_N_int = 8.8332

Core nozzle entropy grow outside the nozzle [J/kg/K] :

$$\Delta s_{9-9e} = \operatorname{cp}_t \ln\left(\frac{T_{9e}}{T_9}\right) - \operatorname{Rt} * \ln\left(\frac{P_{9e}}{P_9}\right)$$

ds_9_9e = 8.0659

External nozzle entropy grow [J/kg/K] :

 $\Delta s_N \exp = -R * \ln(\sigma_N \exp)$

dS_N_ext = 11.7159

External nozzle entropy grow outside the nozzle [J/kg/K] :

$$\Delta s_{19-19e} = cp * \ln\left(\frac{T_{19e}}{T_{19}}\right) - R * \ln\left(\frac{P_{19e}}{P_{19}}\right)$$

ds_19_19e = 0.8493