Aircraft Engine Construction - real turbojet engine

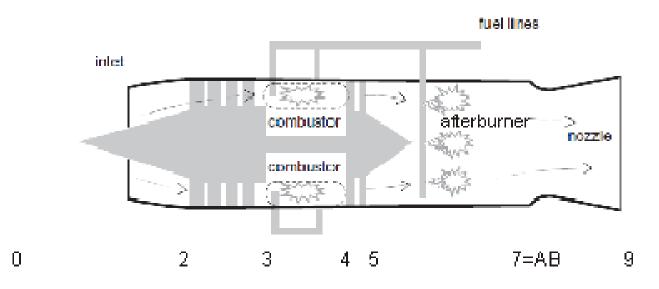

Elaborated by phd Robert JAKUBOWSKI, Rzeszow University of Technology

Table of Contents

TURBOJET ENGINE with LOSSES	
TURBOJET ENGINE WITHOUT AFTERBURNER (AB-OFF) - section 7 is disregarded	
TURBOJET ENGINE WITH AFTERBURNER (AB-ON)	
TURBOJET ENGINE - INCOMPLETE EXPANSION IN THE PROPELLING NOZZLE	

TURBOJET ENGINE with LOSSES

En example of turbojet engin calculation is presented below. Three cases were calculated: turbojet engine, turbojet engine with afterburner and turbojet engine with incomplete expansion in propeling nozzle.

Given

T0=217 K, P0=22 kPa, M0=0.9, compressor pressure ratio 12, Turbine inlet temperature Tt4=1300 K, mass flow m=20 kg/s. For Afterburner ON: TtAB=1750 K

inlet pressure losses coefficient σ_{IN} 0.97, burner pessure losses coefficient σ_B 0.98, nozzle pressure losses coefficient σ_N 0.96, compressor efficeincy η_C 0.83, turbine efficiency η_T 0.9, burner efficiency η_B 0.98, mechanical efficiency η_M = 0.99. For AB ON state afterburner efficiency η_{AB} 0.95, additional afterburner pressure losses coeficient σ_{AB} 0.98

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,

Fumes for Afterburner and nozzle in AB ON mode kAB=1.3, cpAB=1200 J/kg/K, RAB=297 J/kg/K,

For combustion in combustor cpB=1200 J/kg/K,

Fuel heat value: FHV=43 MJ/kg

Flight Mach No

M0 = 0.9000

Air Mass flow [kg/s]

m0 = 20

Turbine inlet temperature [K]

Tt4 = 1300

Compressor pressure ratio

CPR = 12

Afterburner temperature [K]

 $\mathsf{TtAB} = 1750$

Ambient conditions

Static temperature [K]

T0 = 217

Static pressure [Pa]

P0 = 22000

 $e_M = 0.9900$

TURBOJET ENGINE WITHOUT AFTERBURNER (AB-OFF) - section 7 is disregarded Section 0

Total temperature [K]

 $T_{\rm t0} = T_0 \Big(1 + {k-1 \over 2} M_0^2 \Big) \;$ - like for ideal engine

Tt0 = 252.1540

Total pressure [Pa]

$$P_{t0} = P_0 \left(1 + \frac{k-1}{2} M_0^2 \right)^{\frac{k}{k-1}}$$
 - like for ideal engine

Pt0 = 3.7209e+04

Speed of sound [m/s]

$$a_0 = \sqrt{k * R * T_0}$$
 - like for ideal engine

a0 = 295.2805

Flight speed [m/s]

 $V_0 = M_0 st a_0$ - like for ideal engine

V0 = 265.7525

Section 2 Compressor inlet

Total temperature [K]

 $T_{t2} = T_{t0}$ - like for ideal engine

Tt2 = 252.1540

Total pressure [Pa]

$$P_{t2} = \sigma_{\rm IN} * P_{t0}$$

Pt2 = 3.6092e+04

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

$$T_{t3} = T_{t2} * \left(1 + \frac{CPR^{\frac{k-1}{k}} - 1}{\eta_C}\right)$$

Tt3 = 566.2641

Total pressure [Pa]

 $P_{t3} = P_{t2} * CPR$

Pt3 = 4.3311e+05

COMPRESSOR

Compressor work [J/kg]

 $W_C = c_p * (T_{t3} - T_{t2})$

WC = 3.1568e+05

Compressor power [W]

 $P_C = m_0 * W_C$

PC = 6.3136e+06

Section 4 Burner outlet / Turbine inlet

```
Total temperature [K]
```

 T_{t4}

Tt4 = 1300

```
Total pressure [Pa]
```

 $P_{t4} = \sigma_B * P_{t3}$

Pt4 = 4.2445e+05

BURNER

Fuel-air ratio

$$f_B = c_{\rm pB} * \frac{T_{\rm t4} - T_{\rm t3}}{\rm FHV} * \eta_B$$
$$fB = 0.0209$$

Fuel mass flow [kg/s]

 $m_{\rm fB} = m_0 * f_B$ mfB = 0.4179

Section 5 Turbine outlet / Nozzle inlet

Total temperature [K]

$$T_{t5} = T_{t4} - \frac{W_C}{\eta_M * (1 + f_B) * c_{pt}}$$

Tt5 = 1.0330e+03

Total pressure [Pa]

$$P_{t5} = P_{t4} \left(\frac{\eta_T + \frac{T_{t5}}{T_{t4}} - 1}{\eta_T} \right)^{\frac{kt}{kt-1}}$$

Pt5 = 1.4945e+05

Section 9 Engine Nozzle outlet

Total temperature [K]

 $T_{t9} = T_{t5}$

Tt9 = 1.0330e+03

Total pressure [Pa]

 $P_{t9} = P_{t5} * \sigma_N$

Pt9 = 1.4347e+05

Static pressure [Pa]

 $P_9 = P_0$

P9 = 22000

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{\mathrm{kt}-1}{\mathrm{kt}}}$$

T9 = 648.7254

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{\rm t9}}{T_9} - 1\right) * \frac{2}{\rm kt} - 1}$$

M9 = 1.8948

Speed of sound [m/s]

 $a_9 = \sqrt{\text{kt} * \text{Rt} * T_9}$ a9 = 500.2133

Jet speed [m/s]

 $V_9 = M_9 * a_9$

V9 = 947.8210

TURBOJET ENGINE PERFORMANCE CALCULATION

Thrust [N]

$$T = m_0 * (1 + f_B) * V_9 - m_0 * V_0$$

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = (1 + f_B) * V_9 - V_0$$

ST = 701.8725

Specific fuel consumption [kg/N/s]

 $SFC = \frac{m_{\rm fB}}{T}$ SFC = 2.9769e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

SFC = 0.1072

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 - V_0^2}{2 * f_B * {\rm FHV}}$$

 $etha_th = 0.4711$

Propulsive efficiency

$$\eta_p = \frac{2 * V_0 * \text{ST}}{(1 + f_B) * V_9^2 - V_0^2}$$

etha_p = 0.4407

Overall efficiency

$$\eta_o = \frac{V_0 * \mathrm{ST}}{f_B * \mathrm{FHV}} = \eta_{\mathrm{th}} * \eta_p$$

 $etha_{0} = 0.2076$

Temperature, pressure vs engine sections plot

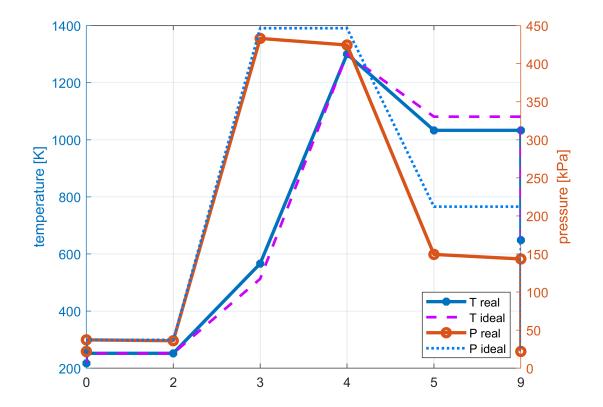


Tabela = 8×5 table

	Section	T real [K]	T ideal [K]	P real [kPa]	P ideal [kPa]
1	'0'	217	217	22	22
2	't0'	252.1540	252.1540	37.2087	37.2087
3	't2'	252.1540	252.1540	36.0924	37.2087
4	't3'	566.2641	512.8654	433.1089	446.5040
5	't4'	1300	1300	424.4467	446.5040
6	't5'	1.0330e+03	1.0809e+03	149.4512	212.1852
7	't9'	1.0330e+03	1.0809e+03	143.4731	212.1852

	Section	T real [K]	T ideal [K]	P real [kPa]	P ideal [kPa]	
8	'9'	648.7254	615.9567	22	2	

Performance comparison of real and ideal turbojet engine

Tabela = 8×4 table

	Parameter	Unit	Real turbojet	ldeal turbojet
1	'Thrust'	'kN'	14.0374	15.9926
2	'Specific Thrust'	'N*s/kg'	701.8725	799.6289
3	'Fuel consumption'	'kg/s'	0.4179	0.4393
4	'Specific fuel consump'	'kg/N/h'	0.1072	0.0989
5	'therm. efficiency'	<u>'-</u> '	0.4711	0.5505
6	'prop. efficiency'	<u>'-</u> '	0.4407	0.4087
7	'overall efficiency'	' <u>-</u> '	0.2076	0.2250
8	'V9'	'm/s'	947.8210	1.0425e+03

CONCLUSIONS

Real to ideal jet engine comparison shows

- Total pressure in engine sections is lower in real engine
- Total temperature after compressor is higher, but after turbine is lower in real engine
- Higher temperature after compressor causes lower fuel consumption of the real engine TIT (turbine inlet temperature) is the same in both cases
- Lower total temperature in the nozzle inlet and higher static temperature in the nozzle outlet causes lower outlet flow velocity and by this way lower thrust and specific thrust of real jet engine
- Specific fuel consumption is higher due to lwer thrust and thermal and overall efficiences are lower in real engine

Temperature - entropy plot

Entropy growth is calculated from equations:

Inlet entropy grow [J/kg/K] :

 $\Delta s_{\rm IN} = -R * \ln(\sigma_{\rm IN})$

$$dS_{IN} = 8.7418$$

Compressor entropy grow [J/kg/K] :

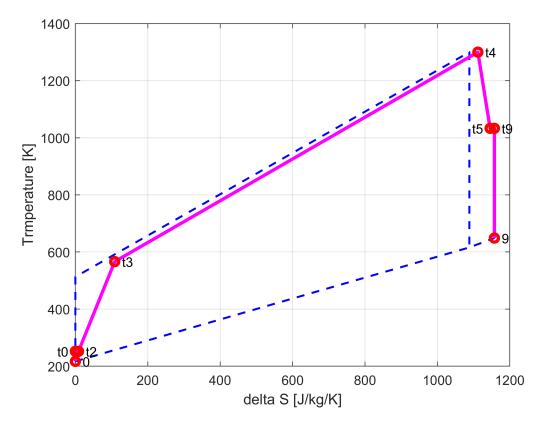
$$\Delta s_C = c_p * \ln \frac{T_{t3}}{T_{t2}} - R * \ln(\text{CPR})$$

dS_C = 99.8974

Combustor entropy grow [J/kg/K] :

$$\Delta s_B = c_{\rm pB} * \ln \frac{T_{\rm t4}}{T_{\rm t3}} - R_t * \ln(\sigma_B)$$

dS_B = 1.0031e+03


Turbine entropy grow [J/kg/K] :

$$\Delta s_T = c_{\text{pt}} * \ln \frac{T_{\text{t5}}}{T_{\text{t4}}} - R_t * \ln \left(\frac{P_{\text{t5}}}{P_{\text{t4}}}\right)$$
$$dS_T = 33.7726$$

Nozzle entropy grow [J/kg/K] :

 $\Delta s_N = -\mathrm{Rt} * \ln(\sigma_N)$

dS_N = 11.8384

CONCLUSIONS

All processes genarte entropy increase. Significant entropy growth is in the burner, compressor and turbine.

TURBOJET ENGINE WITH AFTERBURNER (AB-ON)

Caclculation done for turbojet engine for afterburner OFF mode from section 0 to 5 is valid for the engine with the afterburner ON mode. Differences statr from AB (7) section.

Section AB - AFTERBURNER

Total temperature [K]

$T_{\rm tAB}$

TtAB = 1750

Total pressure [Pa]

 $P_{\text{tAB}} = \sigma_{\text{AB}} * P_{\text{t5}}$

PtAB = 1.4945e+05

Fuel-air ratio

$$f_{AB} = (1 + f_B) * c_{pAB} * \frac{T_{tAB} - T_{t5}}{FHV * \eta_{AB}}$$

fAB = 0.0224

Afterburner fuel mass flow [kg/s]

 $m_{\rm fAB} = m_0 * f_{\rm AB}$ mfAB = 0.4479

Section 9 AB ON

Total temperature [K]

 $T_{t9AB} = T_{tAB}$

Tt9AB = 1750

Total pressure [Pa]

 $P_{t9AB} = \sigma_N * P_{tAB}$

Pt9AB = 1.4347e+05

Staticl pressure [Pa]

 $P_{9AB} = P_0$

P9AB = 22000

Static temperature [K]

$$T_{9AB} = T_{t9AB} * \left(\frac{P_{9AB}}{P_{t9AB}}\right)^{\frac{kAB-1}{kAB}}$$

T9AB = 1.1353e+03

Jet stream Mach No

$$M_{9AB} = \sqrt{\left(\frac{T_{t9AB}}{T_{9AB}} - 1\right) * \frac{2}{k_{AB} - 1}}$$

M9AB = 1.8999

Speed of sound [m/s]

 $a_{9AB} = \sqrt{\mathbf{k}_{AB} * R_{AB} * T_{9AB}}$

a9AB = 662.0727

Jet speed [m/s]

 $V_{9AB} = M_{9AB} * a_{9AB}$

V9AB = 1.2579e+03

TURBOJET ENGINE with AFTERBURNER - PERFORMANCE CALCULATION

Total fuel-air ratio

 $f = f_B + f_{AB}$

 $f_{AB} = 0.0433$

Total fuel consumption [kg/s]

 $m_f = m_{\rm fB} + m_{\rm fAB}$

 $mf_{AB} = 0.8658$

Thrust [N]

$$T_{\rm AB} = m_0 * (1 + f) * V_{\rm 9AB} - m_0 * V_0$$

T_AB = 2.0931e+04

Specific thrust [Ns/kg]

$$ST_{AB} = \frac{T_{AB}}{m_0} = (1+f) * V_{9AB} - V_0$$

ST_AB = 1.0466e+03

Specific fuel consumption [kg/N/s]

 $\mathrm{SFC}_{\mathrm{AB}} = \frac{m_f}{T_{\mathrm{AB}}}$

SFC_AB = 4.1365e-05

Specific fuel consumption [kg/N/h]

 $SFC_{AB} = SFC_{AB} * 3600$

SFC_AB = 0.1489

Thermal efficiency

$$\eta_{\text{thAB}} = \frac{(1+f) * V_{9AB}^2 - V_0^2}{2 * f * \text{FHV}}$$

Propulsive efficiency

$$\eta_{\text{pAB}} = \frac{2 * V_0 * \text{ST}_{\text{AB}}}{(1+f) * V_{\text{9ANB}}^2 - V_0^2}$$

etha_p_AB = 0.2361

Overall efficiency

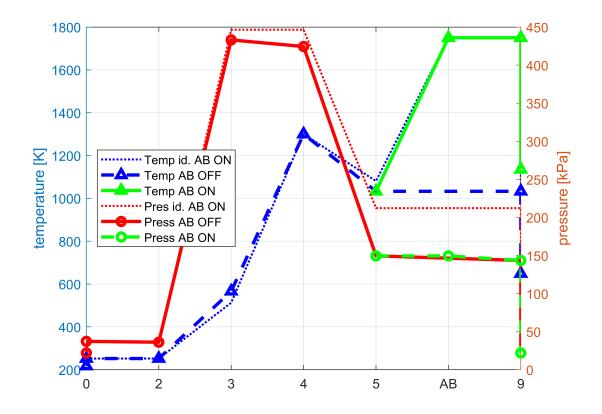
$$\eta_{\text{oAB}} = \frac{V_0 * \text{ST}_{\text{AB}}}{f * \text{FHV}} = \eta_{\text{thAB}} * \eta_{\text{pAB}}$$

etha_o_AB = 0.1002

TURBOJET ENGINE AFTERBURNER OFF/ ON COMPARISON

Tabela	=	8×5	table

	Parameter	Unit	AB OFF	AB ON	AB ON ideal
1	'Thrust'	'kN'	14.0374	20.9314	22.9077
2	'Specific Thrust'	'N*s/kg'	701.8725	1.0466e+03	1.1454e+03
3	'V9'	'm/s'	947.8210	1.2579e+03	1.3545e+03
4	'Fuel consumption'	'kg/s'	0.4179	0.8658	0.8369
5	'Specific fuel consump'	'kg/N/h'	0.1072	0.1489	0.1315
6	'therm. efficiency'	'-'	0.4711	0.4244	0.5115
7	'prop. efficiency'	' <u>-</u> '	0.4407	0.2361	0.2309
8	'overall efficiency'	'-'	0.2076	0.1002	0.1181


CONCLUSIONS:

Engine with AB ON has:

- higher thrust and specific thust due to higher jet speed (+)
- significantly higher fuel consumption and specific fuel consumption (-)
- lower thermal and overall efficiences (-)

Real engine has worse performance efficiency than ideal engine

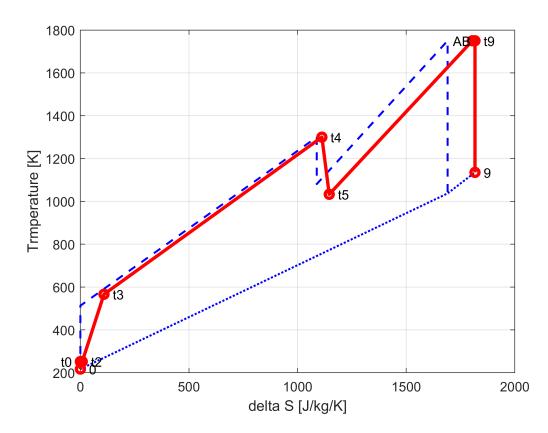
Temperature, pressure plot vs engine sections for ideal and real turbojet with AB ON

CONCLUSIONS:

When AB is on than pressure profile in the engine is unchanged and temperature profile is hanged from AB section (temperature is significantly higher in afterburner and propelling nozzle)

Temperature - entropy plot

Afterburner entropy growth [J/kg/K]

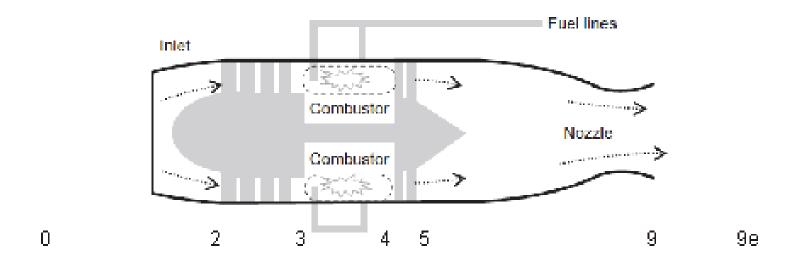

$$\Delta s_{\rm AB} = c_{\rm pAB} * \ln \frac{T_{\rm tAB}}{T_{\rm t5}} - R_{\rm AB} * \ln \frac{P_{\rm tAB}}{P_{\rm t5}}$$

dS_AB = 658.8873

Nozzle entropy growth [J/kg/K]

 $\Delta s_N = -R_{\rm AB} * \ln(\sigma_N)$

 $dS_N = 12.1241$


Conclusions:

In AB ON mode additional entropy increase is in the afterburner process

TURBOJET ENGINE - INCOMPLETE EXPANSION IN THE PROPELLING NOZZLE

Calculation example of a turbojet engine with incomplete expansion in the propelling nozzle is presented on the example done above for turbojet engin without afterburner. Calcilation conditions are the same like for turbojet engine without afterburner (first example). The difference is only that the static pressure in section 9 isn't equal ambient pressure, but is higher. In the example p9=Pt9/1.85, than expansion is conducted outside the nozzle in free stream process.

To present the calculation the additional section 9e is added - in this section jet stream acheieve ambient pressure.

All parameters from section 0 to 9t are the same as for previosly was calculated for the engine without afterburner. The difference is in section 9 static parameters calculation

Section 9 - incomplete decompression in the nozzle

```
Total pressure [Pa]
```

$$P_{t9}$$

Pt9 = 1.4347e+05

Total temperature [K]

T_{t9}

Tt9 = 1.0330e+03

Static pressure [Pa]

$$P_{9\,\text{IE}} = \frac{P_{t9}}{1.85}$$

P9_IE = 7.7553e+04

Static temperature [K]

$$T_{9 \text{ IE}} = T_{t9} * \left(\frac{P_{9 \text{ IE}}}{P_{t9}}\right)^{\frac{\text{kt}-1}{\text{kt}}}$$

 $T9_{IE} = 886.8015$

Mach No. in section 9

$$M_{9\,\text{IE}} = \sqrt{\left(\frac{T_{19}}{T_{9\text{IE}}} - 1\right) * \frac{2}{k_t - 1}}$$

M9_IE = 0.9997

Speed of sound [m/s]

$$a_{9\,\text{IE}} = \sqrt{\mathbf{k}_t * R_t * T_{9\,\text{IE}}}$$

a9_IE = 584.8413

Jet speed in section 9 [m/s]

 $V_{9\,\mathrm{IE}} = M_{9\,\mathrm{IE}} * a_{9\,\mathrm{IE}}$

V9_IE = 584.6740

Gas density in section 9 [kg/m^3]

$$\rho_{9 \text{ IE}} = \frac{P_{9 \text{ IE}}}{R_t * T_{9 \text{ IE}}}$$

$$R09_\text{IE} = 0.3016$$

Section 9e

Jet speed after decompression to ambient pressure [m/s]

$$V_{9e} = V_{9IE} + \frac{P_{9IE} - P_0}{\rho_{9IE} * V_{9IE}}$$

V9e = 899.7531

Static temperature [K]

$$T_{9e} = T_{t9} - \frac{V_{9e}^2}{2 * c_{pt}}$$

T9e = 687.0761

Staticl pressure [Pa]

$$P_{9e} = P_0$$

P9e = 22000

PERFORMANCE OF TURBOJET ENGINE WITH INCOMPLTE EXPANSION IN THE NOZZLE

Thrust [N]

$$T_{\rm IE} = m_0 * (1 + f_B) * V_{9e} - m_0 * V_0$$

T_IE = 1.3056e+04

Specific thrust [Ns/kg]

$$ST_{IE} = \frac{T_{IE}}{m_0} = (1 + f_B) * V_{9e} - V_0$$

ST_IE = 652.8003

Specific fuel consumption [kg/N/s]

$$SFC_{IE} = \frac{m_{fB}}{T_{IE}}$$

SFC_IE = 3.2007e-05

Specific fuel consumption [kg/N/h]

 $SFC_{IE} = SFC_{IE} * 3600$

SFC_IE = 0.1152

Thermal efficiency

$$\eta_{\text{th IE}} = \frac{(1+f_B) * V_{9e}^2 - V_0^2}{2 * f_B * \text{FHV}}$$

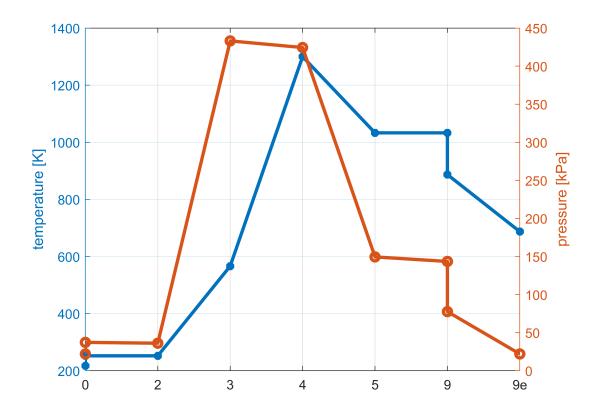
 $etha_th_IE = 0.4206$

Propulsive efficiency

$$\eta_{p \,\text{IE}} = \frac{2 * V_0 * \text{ST}_{\text{IE}}}{(1 + f_B) * V_{9e}^2 - V_0^2}$$

 $etha_p_{IE} = 0.4590$

Overall efficiency

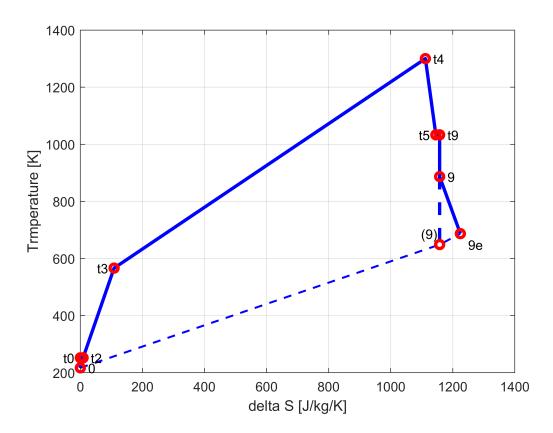

$$\eta_{o \text{ IE}} = \frac{V_0 * \text{ST}_{\text{IE}}}{f_B * \text{FHV}} = \eta_{\text{th IE}} * \eta_{p \text{ IE}}$$

etha_o_IE = 0.1931

FULL EXPANSION IN PROPELING NOZZLE vs. ICOMPLETE EXPANSION IN PROPELING NOZZLE ENGINE PERFORMANCE COMPARISON

Tabela = 11×4 table

	Parameter	Unit	FULL EXP.	INCOMPLETE EXP.
1	'T9'	'K'	648.7254	886.8015
2	'V9'	'm/s'	947.8210	584.6740
3	'P9'	'kPa'	22	77.5530
4	'T9e'	'K'	648.7254	687.0761
5	'V9e'	'm/s'	947.8210	899.7531
6	'Thrust'	'kN'	14.0374	13.0560
7	'Specific Thrust'	'N*s/kg'	701.8725	652.8003
8	'Specific fuel consump'	'kg/N/h'	0.1072	0.1152
9	'therm. efficiency'	<u>.</u> .	0.4711	0.4206
10	'prop. efficiency'	<u>.</u> .	0.4407	0.4590
11	'overall efficiency'	<u>''</u>	0.2076	0.1931



Temperature - entropy plot

Additional entropy growth 9-9e [J/kg/K]

$$\Delta s_{9-9e} = c_{\rm pt} * \ln \frac{T_{9e}}{T_{9\,\rm IE}} - R_t * \ln \frac{P_{9e}}{P_{9\,\rm IE}}$$

deltaS_9_9e = 66.8206

CONCLUSIONS:

Incomplete expansion in the engine propelling nozzle causes:

- Lower thrust and specific thrust than it is in full decompression mode
- Higher specific fuel consumption
- Additional entropy increas caused by jet decompression outside the nozzle