Aircraft Engine Construction - real turbojet engine

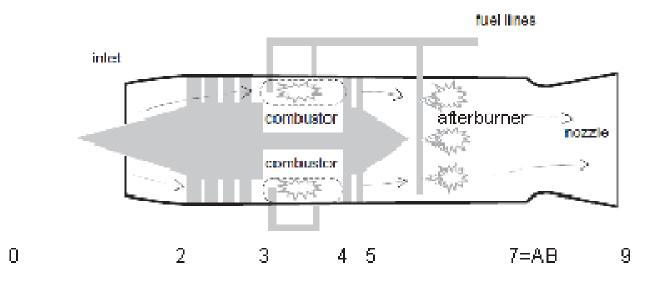

Elaborated by phd Robert JAKUBOWSKI, Rzeszow University of Technology,

Table of Contents

1
2
8
13
18
24

TURBOJET ENGINE with LOSSES

En example of turbojet engin calculation is presented below. Three cases were calculated: turbojet engine, turbojet engine with afterburner and turbojet engine with incomplete expansion in propeling nozzle.

Given

T0=217 K, P0=22 kPa, M0=0.9, compressor pressure ratio 12, Turbine inlet temperature Tt4=1300 K, mass flow m=20 kg/s. For Afterburner ON: TtAB=1750 K

inlet pressure losses coefficient σ_{IN} 0.97, burner pessure losses coefficient σ_B 0.98, nozzle pressure losses coefficient σ_N 0.96, compressor efficiency η_C 0.83, turbine efficiency η_T 0.9, burner efficiency η_B 0.98, mechanical efficiency η_M = 0.99. For AB ON state afterburner efficiency η_{AB} 0.95, additional afterburner pressure losses coefficient σ_{AB} 0.98

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

```
Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,
Fumes for Afterburner and nozzle in AB ON mode kAB=1.3, cpAB=1200 J/kg/K, RAB=297 J/kg/K,
For combustion in combustor cpB=1200 J/kg/K,
Fuel heat value: FHV=43 MJ/kg
Flight Mach No
 M0 = 0.9000
Air Mass flow [kg/s]
 m0 = 20
Turbine inlet temperature [K]
 Tt4 = 1300
Compressor pressure ratio
 CPR = 12
Afterburner temperature [K]
 TtAB = 1750
Ambient conditions
Static temperature [K]
 T0 = 217
Static pressure [Pa]
```

P0 = 22000

TURBOJET ENGINE WITHOUT AFTERBURNER (AB-OFF) - section 7 is disregarded Section 0

Total temperature [K]

 $T_{\rm t0} = T_0 \Big(1 + \frac{k-1}{2} M_0^2 \Big)$ - like for ideal engine

Tt0 = 252.1540

Total pressure [Pa]

 $P_{t0} = P_0 \left(1 + \frac{k-1}{2}M_0^2\right)^{\frac{k}{k-1}}$ - like for ideal engine

Pt0 = 3.7209e+04

Speed of sound [m/s]

 $a_0 = \sqrt{k * R * T_0}$ - like for ideal engine

a0 = 295.2805

Flight speed [m/s]

 $V_0 = M_0 * a_0$ - like for ideal engine

V0 = 265.7525

Section 2 Compressor inlet

Total temperature [K]

 $T_{t2} = T_{t0}$ - like for ideal engine

Tt2 = 252.1540

Total pressure [Pa]

$$P_{t2} = \sigma_{IN} * P_{t0}$$

Pt2 = 3.6092e+04

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

$$T_{t3} = T_{t2} * \left(1 + \frac{\operatorname{CPR}^{\frac{k-1}{k}} - 1}{\eta_C}\right)$$

Tt3 = 566.2641

Total pressure [Pa]

 $P_{t3} = P_{t2} * CPR$

Pt3 = 4.3311e+05

COMPRESSOR

Compressor work [J/kg]

 $W_C = c_p * (T_{t3} - T_{t2})$

WC = 3.1568e+05

Compressor power [W]

 $P_C = m_0 * W_C$

PC = 6.3136e+06

Section 4 Burner outlet / Turbine inlet

Total temperature [K]

 T_{t4}

Tt4 = 1300

Total pressure [Pa]

 $P_{t4} = \sigma_B * P_{t3}$

Pt4 = 4.2445e+05

BURNER

Fuel-air ratio

$$f_B = c_{\text{pB}} * \frac{T_{\text{t4}} - T_{\text{t3}}}{\text{FHV} * \eta_B}$$

fB = 0.0209
Fuel mass flow [kg/s]

 $m_{\rm fB} = m_0 * f_B$ mfB = 0.4179

Section 5 Turbine outlet / Nozzle inlet

Total temperature [K]

$$T_{t5} = T_{t4} - \frac{W_C}{\eta_M * (1 + f_B) * c_{pt}}$$

Total pressure [Pa]

$$P_{t5} = P_{t4} \left(\frac{\eta_T + \frac{T_{t5}}{T_{t4}} - 1}{\eta_T} \right)^{\frac{kt}{kt-1}}$$

Pt5 = 1.4945e+05

Section 9 Engine Nozzle outlet

Total temperature [K]

 $T_{t9} = T_{t5}$

Tt9 = 1.0330e+03

Total pressure [Pa]

 $P_{t9} = P_{t5} * \sigma_N$

Pt9 = 1.4347e+05

Static pressure [Pa]

 $P_{9} = P_{0}$

P9 = 22000

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{kt-1}{kt}}$$

T9 = 648.7254

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{t9}}{T_9} - 1\right) * \frac{2}{\mathrm{kt} - 1}}$$

M9 = 1.8948

Speed of sound [m/s]

 $a_9 = \sqrt{kt * Rt * T_9}$ a9 = 500.2133 Jet speed [m/s]

 $V_9 = M_9 * a_9$

V9 = 947.8210

TURBOJET ENGINE PERFORMANCE CALCULATION

Thrust [N]

$$T = m_0 * (1 + f_B) * V_9 - m_0 * V_0$$

T = 1.4037e+04

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = (1 + f_B) * V_9 - V_0$$

ST = 701.8725

Specific fuel consumption [kg/N/s]

$$SFC = \frac{m_{fB}}{T}$$

SFC = 2.9769e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

SFC = 0.1072

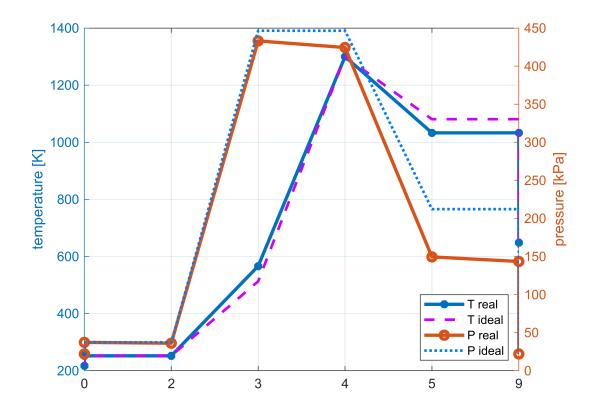
Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 - V_0^2}{2 * f_B * \rm FHV}$$

 $etha_th = 0.4711$

Propulsive efficiency

$$\eta_p = \frac{2 * V_0 * \text{ST}}{(1 + f_B) * V_9^2 - V_0^2}$$


 $etha_p = 0.4407$

Overall efficiency

$$\eta_o = \frac{V_0 * \mathrm{ST}}{f_B * \mathrm{FHV}} = \eta_{\mathrm{th}} * \eta_p$$

etha_o = 0.2076

Temperature, pressure vs engine sections plot

Tabela = 8×5 table

	Section	T real [K]	T ideal [K]	P real [kPa]	P ideal [kPa]
1	'0'	217	217	22	22
2	't0'	252.1540	252.1540	37.2087	37.2087
3	't2'	252.1540	252.1540	36.0924	37.2087
4	't3'	566.2641	512.8654	433.1089	446.5040
5	't4'	1300	1300	424.4467	446.5040
6	't5'	1.0330e+03	1.0809e+03	149.4512	212.1852
7	't9'	1.0330e+03	1.0809e+03	143.4731	212.1852

	Section	T real [K]	T ideal [K]	P real [kPa]	P ideal [kPa]	
8	'9'	648.7254	615.9567	22	2	

Performance comparison of real and ideal turbojet engine

Tabela = 8×4 table

	Parameter	Unit	Real turbojet	Ideal turbojet
1	'Thrust'	'kN'	14.0374	15.9926
2	'Specific Thrust'	'N*s/kg'	701.8725	799.6289
3	'Fuel consumption'	'kg/s'	0.4179	0.4393
4	'Specific fuel consump'	'kg/N/h'	0.1072	0.0989
5	'therm. efficiency'	<u>.</u> .	0.4711	0.5505
6	'prop. efficiency'	<u>.</u> .	0.4407	0.4087
7	'overall efficiency'	<u>'</u> '	0.2076	0.2250
8	'V9'	'm/s'	947.8210	1.0425e+03

CONCLUSIONS

Real to ideal jet engine comparison shows

- Total pressure in engine sections is lower in real engine
- Total temperature after compressor is higher, but after turbine is lower in real engine
- Higher temperature after compressor causes lower fuel consumption of the real engine TIT (turbine inlet temperature) is the same in both cases
- Lower total temperature in the nozzle inlet and higher static temperature in the nozzle outlet causes lower outlet flow velocity and by this way lower thrust and specific thrust of real jet engine
- Specific fuel consumption is higher due to lwer thrust and thermal and overall efficiences are lower in real engine

Temperature - entropy plot

Entropy growth is calculated from equations:

Inlet entropy grow [J/kg/K] :

 $\Delta s_{\rm IN} = -R * \ln(\sigma_{\rm IN})$

Compressor entropy grow [J/kg/K] :

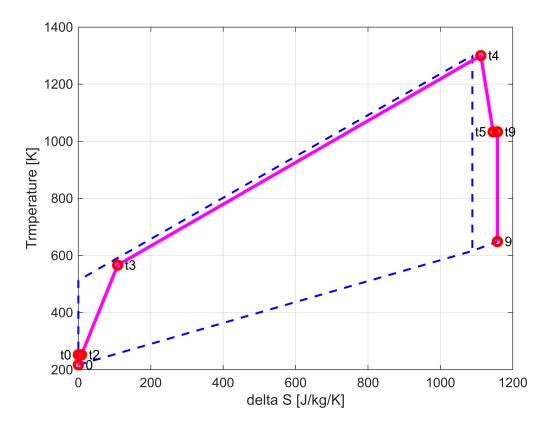
$$\Delta s_C = c_P * \ln \frac{T_{t3}}{T_{t2}} - R * \ln(\text{CPR})$$

dS_C = 99.8974

Combustor entropy grow [J/kg/K] :

$$\Delta s_B = c_{\rm pB} * \ln \frac{T_{\rm t4}}{T_{\rm t3}} - R_t * \ln(\sigma_B)$$

dS_B = 1.0031e+03


Turbine entropy grow [J/kg/K] :

$$\Delta s_T = c_{\text{pt}} * \ln \frac{T_{\text{t5}}}{T_{\text{t4}}} - R_t * \ln \left(\frac{P_{\text{t5}}}{P_{\text{t4}}}\right)$$
$$ds_T = 33.7726$$

Nozzle entropy grow [J/kg/K] :

 $\Delta s_N = -\mathrm{Rt} * \ln(\sigma_N)$

dS_N = 11.8384

CONCLUSIONS

All processes genarte entropy increase. Significant entropy growth is in the burner, compressor and turbine.

TURBOJET ENGINE WITH AFTERBURNER (AB-ON)

Caclculation done for turbojet engine for afterburner OFF mode from section 0 to 5 is valid for the engine with the afterburner ON mode. Differences statr from AB (7) section.

Section AB - AFTERBURNER

```
Total temperature [K]
```

T_{tAB}

TtAB = 1750

Total pressure [Pa]

 $P_{\text{tAB}} = \sigma_{\text{AB}} * P_{\text{t5}}$

PtAB = 1.4945e+05

Fuel-air ratio

 $f_{AB} = (1 + f_B) * c_{pAB} * \frac{T_{tAB} - T_{t5}}{FHV * \eta_{AB}}$

fAB = 0.0224

Afterburner fuel mass flow [kg/s]

 $m_{\rm fAB} = m_0 * f_{\rm AB}$

mfAB = 0.4479

Section 9 AB ON

Total temperature [K]

 $T_{t9AB} = T_{tAB}$

Tt9AB = 1750

Total pressure [Pa]

 $P_{t9AB} = \sigma_N * P_{tAB}$

Pt9AB = 1.4347e+05

Staticl pressure [Pa]

 $P_{9AB} = P_0$

P9AB = 22000

Static temperature [K]

$$T_{9AB} = T_{t9AB} * \left(\frac{P_{9AB}}{P_{t9AB}}\right)^{\frac{kAB-1}{kAB}}$$

T9AB = 1.1353e+03

Jet stream Mach No

$$M_{9AB} = \sqrt{\left(\frac{T_{t9AB}}{T_{9AB}} - 1\right) * \frac{2}{k_{AB} - 1}}$$

M9AB = 1.8999

Speed of sound [m/s]

 $a_{9AB} = \sqrt{k_{AB} * R_{AB} * T_{9AB}}$

a9AB = 662.0727

Jet speed [m/s]

 $V_{9AB} = M_{9AB} * a_{9AB}$

V9AB = 1.2579e+03

TURBOJET ENGINE with AFTERBURNER - PERFORMANCE CALCULATION

Total fuel-air ratio

 $f = f_B + f_{AB}$

 $f_{AB} = 0.0433$

Total fuel consumption [kg/s]

 $m_f = m_{\rm fB} + m_{\rm fAB}$

 $mf_{AB} = 0.8658$

Thrust [N]

```
T_{\rm AB} = m_0 * (1+f) * V_{\rm 9AB} - m_0 * V_0
```

T_AB = 2.0931e+04

Specific thrust [Ns/kg]

$$ST_{AB} = \frac{T_{AB}}{m_0} = (1+f) * V_{9AB} - V_0$$

ST_AB = 1.0466e+03

Specific fuel consumption [kg/N/s]

 $SFC_{AB} = \frac{m_f}{T_{AB}}$

SFC_AB = 4.1365e-05

Specific fuel consumption [kg/N/h]

 $SFC_{AB} = SFC_{AB} * 3600$

SFC_AB = 0.1489

Thermal efficiency

$$\eta_{\text{thAB}} = \frac{(1+f) * V_{9AB}^2 - V_0^2}{2 * f * \text{FHV}}$$

etha_th_AB = 0.4244

Propulsive efficiency

$$\eta_{\text{pAB}} = \frac{2 * V_0 * \text{ST}_{\text{AB}}}{(1+f) * V_{\text{9ANB}}^2 - V_0^2}$$

 $etha_p_AB = 0.2361$

Overall efficiency

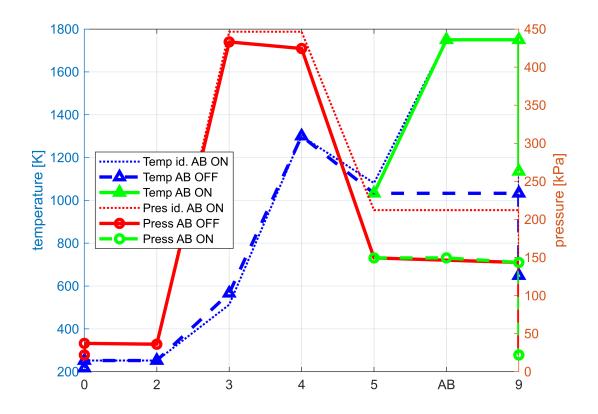
$$\eta_{\text{oAB}} = \frac{V_0 * \text{ST}_{\text{AB}}}{f * \text{FHV}} = \eta_{\text{thAB}} * \eta_{\text{pAB}}$$

 $etha_{0}AB = 0.1002$

TURBOJET ENGINE AFTERBURNER OFF/ ON COMPARISON

Tabela = 8×5 table

	Parameter	Unit	AB OFF	AB ON	AB ON ideal	
1	'Thrust'	'kN'	14.0374	20.9314	22.9077	
2	'Specific Thrust'	'N*s/kg'	701.8725	1.0466e+03	1.1454e+03	
3	'V9'	'm/s'	947.8210	1.2579e+03	1.3545e+03	
4	'Fuel consumption'	'kg/s'	0.4179	0.8658	0.8369	
5	'Specific fuel consump'	'kg/N/h'	0.1072	0.1489	0.1315	
6	'therm. efficiency'	<u>.</u> .	0.4711	0.4244	0.5115	
7	'prop. efficiency'	' <u>-</u> '	0.4407	0.2361	0.2309	
8	'overall efficiency'	·_·	0.2076	0.1002	0.1181	


CONCLUSIONS:

Engine with AB ON has:

- higher thrust and specific thust due to higher jet speed (+)
- significantly higher fuel consumption and specific fuel consumption (-)
- lower thermal and overall efficiences (-)

Real engine has worse performance efficiency than ideal engine

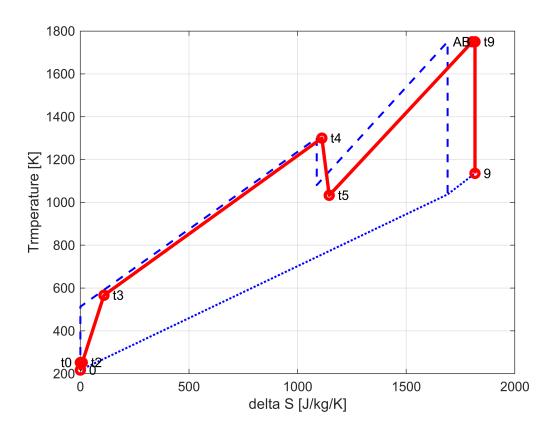
Temperature, pressure plot vs engine sections for ideal and real turbojet with AB ON

CONCLUSIONS:

When AB is on than pressure profile in the engine is unchanged and temperature profile is hanged from AB section (temperature is significantly higher in afterburner and propelling nozzle)

Temperature - entropy plot

Afterburner entropy growth [J/kg/K]

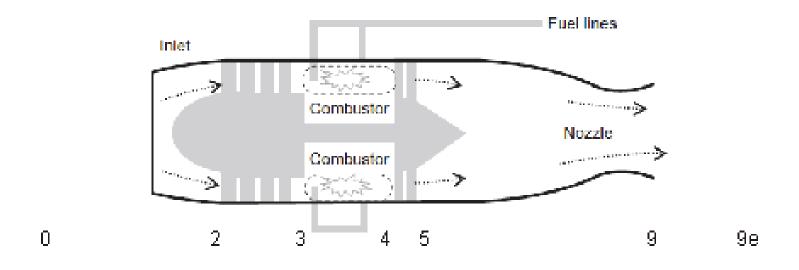

$$\Delta s_{\rm AB} = c_{\rm pAB} * \ln \frac{T_{\rm tAB}}{T_{\rm t5}} - R_{\rm AB} * \ln \frac{P_{\rm tAB}}{P_{\rm t5}}$$

dS_AB = 658.8873

Nozzle entropy growth [J/kg/K]

 $\Delta s_N = -R_{\rm AB} * \ln(\sigma_N)$

 $dS_N = 12.1241$


Conclusions:

In AB ON mode additional entropy increase is in the afterburner process

TURBOJET ENGINE - INCOMPLETE EXPANSION IN THE PROPELLING NOZZLE

Calculation example of a turbojet engine with incomplete expansion in the propelling nozzle is presented on the example done above for turbojet engin without afterburner. Calcilation conditions are the same like for turbojet engine without afterburner (first example). The difference is only that the static pressure in section 9 isn't equal ambient pressure, but is higher. In the example p9=Pt9/1.85, than expansion is conducted outside the nozzle in free stream process.

To present the calculation the additional section 9e is added - in this section jet stream acheieve ambient pressure.

All parameters from section 0 to 9t are the same as for previosly was calculated for the engine without afterburner. The difference is in section 9 static parameters calculation

Section 9 - incomplete decompression in the nozzle

```
Total pressure [Pa]
```

```
P_{\mathrm{t9}}
```

```
Pt9 = 1.4347e+05
```

Total temperature [K]

 T_{t9}

```
Tt9 = 1.0330e+03
```

Static pressure [Pa]

$$P_{9\,\mathrm{IE}} = \frac{P_{\mathrm{t}9}}{1.85}$$

P9_IE = 7.7553e+04

Static temperature [K]

$$T_{9 \text{ IE}} = T_{t9} * \left(\frac{P_{9 \text{ IE}}}{P_{t9}}\right)^{\frac{\text{kt}-1}{\text{kt}}}$$

T9_IE = 886.8015

Mach No. in section 9

$$M_{9 \text{ IE}} = \sqrt{\left(\frac{T_{19}}{T_{9 \text{ IE}}} - 1\right) * \frac{2}{k_t - 1}}$$

M9_IE = 0.9997

 $a_{9\,\mathrm{IE}} = \sqrt{\mathbf{k}_t * R_t * T_{9\,\mathrm{IE}}}$

a9_IE = 584.8413

Jet speed in section 9 [m/s]

 $V_{9 \text{ IE}} = M_{9 \text{ IE}} * a_{9 \text{ IE}}$

V9_IE = 584.6740

Gas density in section 9 [kg/m^3]

$$\rho_{9 \text{ IE}} = \frac{P_{9 \text{ IE}}}{R_t * T_{9 \text{ IE}}}$$

$$RO9_IE = 0.3016$$

Section 9e

Jet speed after decompression to ambient pressure [m/s]

$$V_{9e} = V_{9\text{IE}} + \frac{P_{9\text{IE}} - P_0}{\rho_{9\text{IE}} * V_{9\text{IE}}}$$

V9e = 899.7531

Static temperature [K]

$$T_{9e} = T_{t9} - \frac{V_{9e}^2}{2 * c_{pt}}$$

T9e = 687.0761

Staticl pressure [Pa]

$$P_{9e} = P_0$$

P9e = 22000

PERFORMANCE OF TURBOJET ENGINE WITH INCOMPLTE EXPANSION IN THE NOZZLE

Thrust [N]

$$T_{\rm IE} = m_0 * (1 + f_B) * V_{9e} - m_0 * V_0$$

T_IE = 1.3056e+04

Specific thrust [Ns/kg]

$$ST_{IE} = \frac{T_{IE}}{m_0} = (1 + f_B) * V_{9e} - V_0$$

ST_IE = 652.8003

Specific fuel consumption [kg/N/s]

 $SFC_{IE} = \frac{m_{fB}}{T_{IE}}$

SFC_IE = 3.2007e-05

Specific fuel consumption [kg/N/h]

 $SFC_{IE} = SFC_{IE} * 3600$

SFC_IE = 0.1152

Thermal efficiency

$$\eta_{\text{th IE}} = \frac{(1+f_B) * V_{9e}^2 - V_0^2}{2 * f_B * \text{FHV}}$$

 $etha_th_IE = 0.4206$

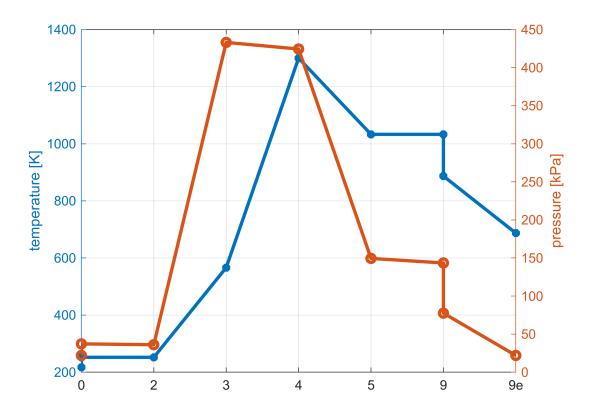
Propulsive efficiency

$$\eta_{P \text{IE}} = \frac{2 * V_0 * \text{ST}_{\text{IE}}}{(1 + f_B) * V_9 e^2 - V_0^2}$$

 $etha_p_{IE} = 0.4590$

Overall efficiency

$$\eta_{o \text{ IE}} = \frac{V_0 * \text{ST}_{\text{IE}}}{f_B * \text{FHV}} = \eta_{\text{th} \text{ IE}} * \eta_{p \text{ IE}}$$

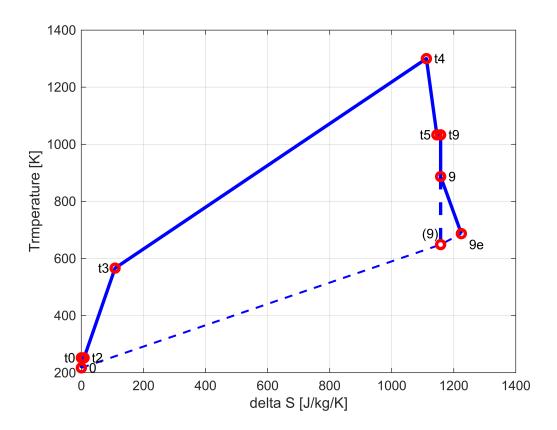

etha_o_IE = 0.1931

FULL EXPANSION IN PROPELING NOZZLE vs. ICOMPLETE EXPANSION IN PROPELING NOZZLE ENGINE PERFORMANCE COMPARISON

	Parameter	Unit	FULL EXP.	INCOMPLETE EXP.
1	'Tt9'	'K'	1.0330e+03	1.0330e+03
2	'Pt9'	'kPa'	143.4731	143.4731
3	'T9'	'K'	648.7254	886.8015
4	'V9'	'm/s'	947.8210	584.6740
5	'P9'	'kPa'	22	77.5530
6	'T9e'	'K'	648.7254	687.0761
7	'V9e'	'm/s'	947.8210	899.7531
8	'Thrust'	'kN'	14.0374	13.0560
9	'Specific Thrust'	'N*s/kg'	701.8725	652.8003
10	'Specific fuel consump'	'kg/N/h'	0.1072	0.1152
11	'therm. efficiency'	' <u>'</u> '	0.4711	0.4206
12	'prop. efficiency'	'-'	0.4407	0.4590

	Parameter	Unit	FULL EXP.	INCOMPLETE EXP.
13	'overall efficiency'	<u>.</u> .	0.2076	0.1931

Temperature, pressure vs engine sections plot



Temperature - entropy plot

Additional entropy growth 9-9e [J/kg/K]

$$\Delta s_{9-9e} = c_{\text{pt}} * \ln \frac{T_{9e}}{T_{9\text{IE}}} - R_t * \ln \frac{P_{9e}}{P_{9\text{IE}}}$$

deltaS_9_9e = 66.8206

CONCLUSIONS:

Incomplete expansion in the engine propelling nozzle causes:

- Lower thrust and specific thrust than it is in full decompression mode
- Higher specific fuel consumption
- Additional entropy increas caused by jet decompression outside the nozzle

TURBOJET ENGINE WITH CONVERGENT NOZZLE and WITHOUT AFTERBURNER

Given

T0=288 K, P0=100 kPa, M0=0, compressor pressure ratio 4 and 8, Turbine inlet temperature Tt4=1100 K, mass flow m=20 kg/s.

inlet pressure losses coefficient σ_{IN} 0.97, burner pessure losses coefficient σ_B 0.98, nozzle pressure losses coefficient σ_N 0.96, compressor efficiency η_C 0.8, turbine efficiency η_T 0.85, burner efficiency η_B 0.98, mechanical efficiency η_M = 0.99. Engine exit nozzle is convergent

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,

For combustion in combustor cpB=1200 J/kg/K,

Fuel heat value: FHV=43 MJ/kg Flight Mach No M0 = 0 Air Mass flow [kg/s] m0 = 20 Turbine inlet temperature [K] Tt4 = 1100 Compressor pressure ratio (first option) CPR1 = 4

Compressor pressure ratio (second option)

CPR2 = 8

Ambient conditions

Static temperature [K]

T0 = 288

Static pressure [Pa]

P0 = 100000

CALCULATION

Section 0

Total temperature [K]

$$T_{t0} = T_0 \left(1 + \frac{k-1}{2} M_0^2 \right)$$
 - like for ideal engine
Tt0 = 288

Total pressure [Pa]

$$P_{t0} = P_0 \left(1 + \frac{k-1}{2} M_0^2 \right)^{\frac{k}{k-1}}$$
 - like for ideal engine

Pt0 = 100000

Speed of sound [m/s]

$$a_0 = \sqrt{k * R * T_0}$$
 - like for ideal engine

a0 = 340.1741

Flight speed [m/s]

 $V_0 = M_0 * a_0$ - like for ideal engine

V0 = 0

Section 2 Compressor inlet

Total temperature [K]

$$T_{t2} = T_{t0}$$
 - like for ideal engine

Total pressure [Pa]

 $P_{t2} = \sigma_{IN} * P_{t0}$

Pt2 = 97000

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

$$T_{t3} = T_{t2} * \left(1 + \frac{\operatorname{CPR}^{\frac{k-1}{k}} - 1}{\eta_C}\right)$$

first option for CPR1

 $Tt3_1 = 462.9579$

second option for CPR2

 $Tt3_2 = 580.1210$

Total pressure [Pa]

 $P_{t3} = P_{t2} * CPR$

first option for CPR1

 $Pt3_1 = 388000$

second option for CPR2

 $Pt3_2 = 776000$

COMPRESSOR

Compressor work [J/kg]

 $W_C = c_P * (T_{t3} - T_{t2})$

first option for CPR1

 $WC_1 = 1.7583e+05$

second option for CPR2

WC_2 = 2.9358e+05

Section 4 Burner outlet / Turbine inlet

Total temperature [K]

 T_{t4}

Tt4 = 1100

Total pressure [Pa]

 $P_{t4} = \sigma_B * P_{t3}$

first option for CPR1

 $Pt4_1 = 380240$

second option for CPR2

 $Pt4_2 = 760480$

BURNER

Fuel-air ratio

$$f_B = c_{\rm pB} * \frac{T_{\rm t4} - T_{\rm t3}}{\rm FHV * \eta_B}$$

first option for CPR1

 $fB_1 = 0.0181$

second option for CPR2

 $fB_2 = 0.0148$

Fuel mass flow [kg/s]

 $m_{\rm fB} = m_0 * f_B$

first option for CPR1

 $mfB_1 = 0.3628$

second option for CPR2

 $mfB_2 = 0.2961$

Section 5 Turbine outlet / Nozzle inlet

Total temperature [K]

$$T_{t5} = T_{t4} - \frac{W_C}{\eta_M * (1 + f_B) * c_{pt}}$$

first option for CPR1

 $Tt5_1 = 950.9023$

second option for CPR2

 $Tt5_2 = 850.2385$

Total pressure [Pa]

$$P_{t5} = P_{t4} \left(\frac{\eta_T + \frac{T_{t5}}{T_{t4}} - 1}{\eta_T} \right)^{\frac{kt}{kt-1}}$$

first option for CPR1

Pt5_1 = 1.8880e+05

second option for CPR2

Pt5_2 = 2.1733e+05

Section 9 Engine Nozzle outlet

Total temperature [K]

 $T_{t9} = T_{t5}$

first option for CPR1

 $Tt9_1 = 950.9023$

second option for CPR2

 $Tt9_2 = 850.2385$

Total pressure [Pa]

 $P_{t9} = P_{t5} * \sigma_N$

first option for CPR1

Pt9_1 = 1.8125e+05

second option for CPR2

 $Pt9_2 = 2.0864e+05$

Critical pressure parameter

$$\beta_{\rm cr} = \left(\frac{1+k_t}{2}\right)^{\frac{\rm kt}{\rm kt}-1}$$

 $beta_{cr} = 1.8506$

Checking of outlet nozzle pressure ratio vs critical pressure parameter

first option for CPR1

 $P_{t9}/P_0 =$

ans = 1.8125

second option for CPR2

 $P_{t9}/P_0 = f$

ans = 2.0864

In the first option Pt9/P0< β_{cr} therefore the full expansion is in the nozzle.

In the second option Pt9/P0> β_{cr} therefore gas expansion in the nozzle is to critical paramethers. Expansion process is continued outside the nozzle.

Calculation of full expansion in the nozzle - first option

Static pressure [Pa]

 $P_9 = P_0$

 $P9_1 = 100000$

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{kt-1}{kt}}$$

 $T9_1 = 820.4530$

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{\rm t9}}{T_9} - 1\right) * \frac{2}{\rm kt} - 1}$$

 $M9_1 = 0.9816$

Speed of sound [m/s]

 $a_9 = \sqrt{\mathrm{kt} * \mathrm{Rt} * T_9}$

a9_1 = 562.5377

Jet speed [m/s]

 $V_9 = M_9 * a_9$

 $V9_1 = 552.2094$

PERFORMANCE CALCULATION

Thrust [N]

$$T = m_0 * (1 + f_B) * V_9 - m_0 * V_0$$

 $T_1 = 1.1245e+04$

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = (1 + f_B) * V_9 - V_0$$

 $ST_1 = 562.2269$

Specific fuel consumption [kg/N/s]

$$SFC = \frac{m_{fB}}{T}$$

SFC_1 = 3.2266e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

 $SFC_1 = 0.1162$

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 - V_0^2}{2 * f_B * \rm FHV}$$

 $etha_th_1 = 0.1990$

Propulsive efficiency

$$\eta_p = \frac{2 * V_0 * \text{ST}}{(1 + f_B) * V_9^2 - V_0^2}$$

$$etha_p_1 = 0$$

Overall efficiency

$$\eta_o = \frac{V_0 * \mathrm{ST}}{f_B * \mathrm{FHV}} = \eta_{\mathrm{th}} * \eta_p$$

 $etha_0_1 = 0$

Calculation of critical expansion in the nozzle - second option

Static pressure [Pa]

$$P_9 = \frac{P_{t9}}{\beta_{\rm cr}}$$

P9_2 = 1.1274e+05

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{kt-1}{kt}}$$

 $T9_2 = 729.8184$

Gas velocity = Speed of sound [m/s]

 $V_9 = a_9 = \sqrt{\mathbf{k}_t * R_t * T_{9\,\mathrm{IE}}}$

 $V9_2 = 530.5572$

Gas density in section 9 [kg/m^3]

$$\rho_9 = \frac{P_9}{R_t * T_9}$$

 $R09_2 = 0.5327$

Section 9e

Jet speed after decompression to ambient pressure [m/s]

$$V_{9e} = V_9 + \frac{P_9 - P_0}{\rho_9 * V_9}$$

V9e = 575.6343

Static temperature [K]

$$T_{9e} = T_{t9} - \frac{V_{9e}^2}{2 * c_{pt}}$$

T9e = 708.6338

Staticl pressure [Pa]

$$P_{9e} = P_0$$

P9e = 100000

PERFORMANCE OF TURBOJET ENGINE WITH INCOMPLTE EXPANSION IN THE NOZZLE

Thrust [N]

$$T = m_0 * (1 + f_B) * V_{9e} - m_0 * V_0$$

T_2 = 1.1683e+04

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = (1 + f_B) * V_{9e} - V_0$$

 $ST_2 = 584.1562$

Specific fuel consumption [kg/N/s]

 $SFC = \frac{m_{fB}}{T_{IE}}$

 $SFC_2 = 2.5343e-05$

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

 $SFC_2 = 0.0912$

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_{9e}^2 - V_0^2}{2 * f_B * {\rm FHV}}$$

 $etha_th_2 = 0.2641$

Propulsive efficiency

$$\eta_p = \frac{2 * V_0 * \text{ST}_{\text{IE}}}{(1 + f_B) * V_9 e^2 - V_0^2}$$

Overall efficiency

$$\eta_o = \frac{V_0 * \mathrm{ST}}{f_B * \mathrm{FHV}} = \eta_{\mathrm{th}} * \eta_p$$

etha_o_2 = 0

Option 1 vs Option 2 comparison

Tabela = 14×4 table

	Parameter	Unit	FULL EXP. (first option)	CRITICAL EXP. (second option)
1	'CPR'		4	8
2	'Tt9'	'K'	950.9023	850.2385
3	'Pt9'	'kPa'	181.2470	208.6362
4	'T9'	'K'	820.4530	729.8184
5	'V9'	'm/s'	552.2094	530.5572
6	'P9'	'kPa'	100	112.7395
7	'T9e'	'K'	820.4530	708.6338
8	'V9e'	'm/s'	552.2094	575.6343
9	'Thrust'	'kN'	11.2445	11.6831
10	'Specific Thrust'	'N*s/kg'	562.2269	584.1562
11	'Specific fuel c	'kg/N/h'	0.1162	0.0912
12	'therm. efficiency'	9	0.1990	0.2641
13	'prop. efficiency'	2	0	0
14	'overall efficiency'	<u>.</u> .	0	0