Aircraft Engine Construction - Ideal turbojet engine

Elaborated by phd Robert JAKUBOWSKI, Rzeszow university of Technology

Table of Contents

IDEAL TURBOJET ENGINE	
TURBOJET ENGINE WITHOUT AFTERBURNER	AB-OFF)
TURBOJET ENGINE WITH AFTERBURNER (AB-	N)
TURBOJET ENGINE - INCOMPLETE EXPANSION	IN THE PROPELLING NOZZLE12

IDEAL TURBOJET ENGINE

Three examples of turbojet engine calculation are presented: for turbojet engine, for turbojet engine with afterburner and for turbojet engine with incomplete expansion in the nozzle.

Given

T0=217 K, P0=22 kPa, M0=0.9, compressor pressure ratio 12, Turbine inlet temperature Tt4=1300 K, mass flow m=20 kg/s. For Afterburner ON: TtAB=1750 K

Gas parameters:

Air: k=1.4; cp=1005 J/kg/K, R=287 J/kg/K,

Fumes in turbine and nozzle kt=1.33, cpt=1170 J/kg/K, Rt=290 J/kg/K,

Fumes for Afterburner and nozzle in AB ON mode kAB=1.3, cpAB=1200 J/kg/K, RAB=297 J/kg/K,

For combustion in combustor cpB=1200 J/kg/K,

Fuel heat value: FHV=43 MJ/kg

Flight Mach No

M0 = 0.9000

Air Mass flow [kg/s]

m0 = 20

Turbine inlet temperature [K]

Tt4 = 1300

Compressor pressure ratio

CPR = 12

Afterburner temperature [K]

TtAB = 1750

Ambient conditions

Static temperature [K]

T0 = 217

Static pressure [Pa]

P0 = 22000

TURBOJET ENGINE WITHOUT AFTERBURNER (AB-OFF)

Section 0

Total temperature [K]

$$T_{\rm t0} = T_0 \left(1 + \frac{k-1}{2} M_0^2 \right)$$

Tt0 = 252.1540

Total pressure [Pa]

$$P_{t0} = P_0 \left(1 + \frac{k-1}{2} M_0^2 \right)^{\frac{k}{k-1}}$$

Pt0 = 3.7209e+04

Speed of sound [m/s]

$$a_0 = \sqrt{k * R * T_0}$$

a0 = 295.2805

Flight speed [m/s]

 $V_0 = M_0 * a_0$

VØ = 265.7525

Section 2 Compressor inlet

Total temperature [K]

 $T_{t2} = T_{t0}$

Tt2 = 252.1540

Total pressure [Pa]

$$P_{t2} = P_{t0}$$

Pt2 = 3.7209e+04

Section 3 - Compressor outlet / Burner inlet

Total temperature [K]

$$T_{t3} = T_{t2} * CPR^{\frac{k-1}{k}}$$

Tt3 = 512.8654

Total pressure [Pa]

 $P_{t3} = P_{t2} * CPR$

Pt3 = 4.4650e+05

COMPRESSOR

Compressor work [J/kg]

 $W_C = c_p * (T_{t3} - T_{t2})$

WC = 2.6201e+05

Compressor power [W]

 $P_C = m_p * W_C$

PC = 5.2403e+06

Section 4 Burner outlet / Turbine inlet

```
Total temperature [K]
```

 T_{t4}

Tt4 = 1300

Total pressure [Pa]

 $P_{t4} = P_{t3}$

Pt4 = 4.4650e+05

BURNER

Fuel-air ratio

$$f_B = c_{\rm pB} * \frac{T_{\rm t4} - T_{\rm t3}}{\rm FHV}$$

fB = 0.0220

Fuel mass flow [kg/s]

 $m_{\rm fB} = m_0 * f_B$ mfB = 0.4393

Section 5 Turbine outlet / Nozzle inlet

Total temperature [K]

$$T_{t5} = T_{t4} - \frac{W_C}{(1+f_B) * c_{\text{pt}}}$$

Tt5 = 1.0809e+03

Total pressure [Pa]

$$P_{t5} = P_{t4} * \left(\frac{T_{t5}}{T_{t4}}\right)^{\frac{\mathrm{kt}}{\mathrm{kt}-1}}$$

Pt5 = 2.1219e+05

Section 9 Engine Nozzle outlet

Total temperature [K]

 $T_{t9} = T_{t5}$

Tt9 = 1.0809e+03

Total pressure [Pa]

 $P_{t9} = P_{t5}$

Pt9 = 2.1219e+05

Static pressure [Pa]

$$P_9 = P_0$$

P9 = 22000

Static temperature [K]

$$T_9 = T_{t9} * \left(\frac{P_9}{P_{t9}}\right)^{\frac{\mathrm{kt}-1}{\mathrm{kt}}}$$

T9 = 615.9567

Jet stream Mach No

$$M_9 = \sqrt{\left(\frac{T_{t9}}{T_9} - 1\right) * \frac{2}{\mathrm{kt} - 1}}$$

M9 = 2.1388

Speed of sound [m/s]

 $a_9 = \sqrt{\text{kt} * \text{Rt} * T_9}$ a9 = 487.4162

Jet speed [m/s]

 $V_9 = M_9 * a_9$

V9 = 1.0425e+03

TURBOJET ENGINE PERFORMANCE CALCULATION

Thrust [N]

$$T = m_0 * (1 + f_B) * V_9 - m_0 * V_0$$

Specific thrust [Ns/kg]

$$ST = \frac{T}{m_0} = (1 + f_B) * V_9 - V_0$$

ST = 799.6289

Specific fuel consumption [kg/N/s]

 $SFC = \frac{m_{fB}}{T}$ SFC = 2.7471e-05

Specific fuel consumption [kg/N/h]

SFC = SFC * 3600

SFC = 0.0989

Thermal efficiency

$$\eta_{\rm th} = \frac{(1+f_B) * V_9^2 - V_0^2}{2 * f_B * \rm{FHV}}$$

 $etha_th = 0.5505$

Propulsive efficiency

$$\eta_p = \frac{2 * V_0 * \text{ST}}{(1 + f_B) * V_9^2 - V_0^2}$$

etha_p = 0.4087

Overall efficiency

$$\eta_o = \frac{V_0 * \mathrm{ST}}{f_B * \mathrm{FHV}} = \eta_{\mathrm{th}} * \eta_p$$

 $etha_{0} = 0.2250$

Temperature, pressure vs engine sections plot

CONCLUSIONS

- Pressure increases in inlet (from sataic to total due to flight speed) and compressor
- Pressure decrease in turbine and propelling nozzle (from total to static jet speed is produecd)
- Tepearture increase in inlet, compressor and combustor
- Temparture decrease in turbine and propeling nozzle

Temperature - entropy plot

Combuctor entropy growth

$$\Delta s = c_{\rm pB} * \ln \frac{T_{\rm t4}}{T_{\rm t3}} - R_t * \ln \frac{P_{\rm t4}}{P_{\rm t3}}$$

deltaS = 1.1161e+03

CONCLUSIONS

• Ram compression (in the inlet) and compression in the compressor is isentropic as decompression in the turbine and propelling nozzle. The entropy grow is observed in combustion process only

TURBOJET ENGINE WITH AFTERBURNER (AB-ON)

Caclculation done for turbojet engine for Afterburner OFF mode from sections 0 to 5 are valid for Afterburner ON mode

Section AB - AFTERBURNER

```
Total temperature [K]
T_{\rm tAB}
  TtAB = 1750
Total pressure [Pa]
P_{\text{tAB}} = P_{\text{t5}}
```

PtAB = 2.1219e+05

Fuel-air ratio

$$f_{\rm AB} = (1 + f_B) * c_{\rm pAB} * \frac{T_{\rm tAB} - T_{\rm t5}}{\rm FHV}$$

fAB = 0.0199

Afterburner fuel mass flow [kg/s]

 $m_{\rm fAB} = m_0 * f_{\rm AB}$

mfAB = 0.3976

Section 9 AB ON

Total temperature [K]

$$T_{t9AB} = T_{tAB}$$

Tt9AB = 1750

Total pressure [Pa]

 $P_{t9AB} = P_{tAB}$

Pt9AB = 2.1219e+05

Staticl pressure [Pa]

 $P_{9AB} = P_0$

P9AB = 22000

Static temperature [K]

$$T_{9AB} = T_{t9AB} * \left(\frac{P_{9AB}}{P_{t9AB}}\right)^{\frac{kAB-1}{kAB}}$$

T9AB = 1.0373e+03

Jet stream Mach No

$$M_{9AB} = \sqrt{\left(\frac{T_{t9AB}}{T_{9AB}} - 1\right) * \frac{2}{k_{AB} - 1}}$$

M9AB = 2.1403

Speed of sound [m/s]

 $a_{9AB} = \sqrt{k_{AB} * R_{AB} * T_{9AB}}$ a9AB = 632.8441

Jet speed [m/s]

 $V_{9AB} = M_{9AB} * a_{9AB}$

TURBOJET ENGINE with AFTERBURNER PERFORMANCE CALCULATION

Total fuel-air ratio

$$f = f_B + f_{AB}$$

 $f_{AB} = 0.0418$

Total fuel consumption [kg/s]

 $m_f = m_{\rm fB} + m_{\rm fAB}$

 $mf_{AB} = 0.8369$

Thrust [N]

$$T_{\rm AB} = m_0 * (1 + f) * V_{\rm 9AB} - m_0 * V_0$$

T_AB = 2.2908e+04

Specific thrust [Ns/kg]

$$ST_{AB} = \frac{T_{AB}}{m_0} = (1+f) * V_{9AB} - V_0$$

ST_AB = 1.1454e+03

Specific fuel consumption [kg/N/s]

 $SFC_{AB} = \frac{m_f}{T_{AB}}$ $SFC_{AB} = 3.6534e-05$

Specific fuel consumption [kg/N/h]

 $SFC_{AB} = SFC_{AB} * 3600$

SFC_AB = 0.1315

Thermal efficiency

$$\eta_{\text{thAB}} = \frac{(1+f) * V_{9AB}^2 - V_0^2}{2 * f * \text{FHV}}$$

 $etha_th_AB = 0.5115$

Propulsive efficiency

$$\eta_{\text{pAB}} = \frac{2 * V_0 * \text{ST}_{\text{AB}}}{(1+f) * V_{\text{9ANB}}^2 - V_0^2}$$

 $etha_p_AB = 0.2309$

Overall efficiency

$$\eta_{\text{oAB}} = \frac{V_0 * \text{ST}_{\text{AB}}}{f * \text{FHV}} = \eta_{\text{thAB}} * \eta_{\text{pAB}}$$

etha_o_AB = 0.1181

TURBOJET ENGINE AFTERBURNER OFF/ ON COMPARISON

Tabela = 8×4 table

	Parameter	Unit	AB OFF	AB ON	
1	'Thrust'	'kN'	15.9926	22.9077	
2	'Specific Thrust'	'N*s/kg'	799.6289	1.1454e+03	
3	'V9'	'm/s'	1.0425e+03	1.3545e+03	
4	'Fuel consumption'	'kg/s'	0.4393	0.8369	
5	'Specific fuel	'kg/N/h'	0.0989	0.1315	
6	'therm. effici	<u>.</u> .	0.5505	0.5115	
7	'prop. efficiency'	<u>''</u>	0.4087	0.2309	
8	'overall effic	' <u>-</u> '	0.2250	0.1181	

CONCLUSIONS:

Engine with AB ON has:

- higher thrust and specific thust due to higher jet speed (+)
- significantly higher fuel consumption and specific fuel consumption (-)
- lower all efficiences (-)

Temperature, pressure vs engine sections plot

CONCLUSIONS:

When AB is on than pressure profile in the engine is unchanged and temperature profile is hanged from AB section (temperature is significantly higher in afterburner and propelling nozzle)

Temperature - entropy plot

Afterburner entropy growth

$$\Delta s_{\mathrm{AB}} = c_{\mathrm{pAB}} * \ln \frac{T_{\mathrm{tAB}}}{T_{\mathrm{t5}}} - R_{\mathrm{AB}} * \ln \frac{P_{\mathrm{tAB}}}{P_{\mathrm{t5}}}$$

 $deltaS_AB = 602.3128$

Conclusions:

TURBOJET ENGINE - INCOMPLETE EXPANSION IN THE PROPELLING NOZZLE

Calculation example of a turbojet engine with incomplete expansion in the propelling nozzle is presented on the example done above for turbojet engin without afterburner. The difference is only that the static pressure in the section 9 isn't equal to ambient pressure, but is higher. In the example p9=Pt9/1.85. To present the calculation the additional section 9e is added (in this section jet stream acheieve ambient pressure)

All parameters from section 0 to 9t are the same as for previosly done calculation for the engine without afterburner. The difference is only in section 9 static parameters calculation

Section 9 - incomplete expansion in the nozzle

```
Total pressure [Pa]
```

```
P_{t9}
```

Pt9 = 2.1219e+05

Total temperature [K]

 T_{t9}

Tt9 = 1.0809e+03

Static pressure [Pa]

$$P_{9\,\mathrm{IE}} = \frac{P_{\mathrm{t9}}}{1.85}$$

P9_IE = 1.1469e+05

Static temperature [K]

$$T_{9 \text{ IE}} = T_{t9} * \left(\frac{P_{9 \text{ IE}}}{P_{t9}}\right)^{\frac{\text{kt}-1}{\text{kt}}}$$

T9_IE = 927.8599

Mach No. in section 9

$$M_{9\,\text{IE}} = \sqrt{\left(\frac{T_{\text{t9}}}{T_{9\text{IE}}} - 1\right) * \frac{2}{\text{k}_t - 1}}$$

M9_IE = 0.9997

Speed of sound [m/s]

$$a_{9\,\mathrm{IE}} = \sqrt{\mathbf{k}_t \ast R_t \ast T_{9\,\mathrm{IE}}}$$

a9_IE = 598.2270

Jet speed in section 9 [m/s]

 $V_{9\,\mathrm{IE}} = M_{9\,\mathrm{IE}} * a_{9\,\mathrm{IE}}$

V9_IE = 598.0558

Gas density in section 9 [kg/m^3]

$$\rho_{9\,\mathrm{IE}} = \frac{P_{9\,\mathrm{IE}}}{R_t * T_{9\,\mathrm{IE}}}$$

 $R09_{IE} = 0.4262$

Section 9e

Jet speed after expanison to ambient pressure [m/s]

$$V_{9e} = V_{9IE} + \frac{P_{9IE} - P_0}{\rho_{9IE} * V_{9IE}}$$

V9e = 961.6779

Static temperature [K]

$$T_{9e} = T_{t9} - \frac{V_{9e}^2}{2 * c_{pt}}$$

T9e = 685.6451

Staticl pressure [Pa]

$$P_{9e} = P_0$$

P9e = 22000

PERFORMANCE OF TURBOJET ENGINE WITH INCOMPLTE EXPANSION IN THE NOZZLE

Thrust [N]

$$T_{\rm IE} = m_0 * (1 + f_B) * V_{9e} - m_0 * V_0$$

T_IE = 1.4341e+04

Specific thrust [Ns/kg]

$$ST_{IE} = \frac{T_{IE}}{m_0} = (1 + f_B) * V_{9e} - V_0$$

ST_IE = 717.0502

Specific fuel consumption [kg/N/s]

$$SFC_{IE} = \frac{m_{fB}}{T_{IE}}$$

SFC_IE = 3.0635e-05

Specific fuel consumption [kg/N/h]

 $SFC_{IE} = SFC_{IE} * 3600$

SFC_IE = 0.1103

Thermal efficiency

$$\eta_{\text{th IE}} = \frac{(1+f_B) * V_{9e}^2 - V_0^2}{2 * f_B * \text{FHV}}$$

 $etha_th_IE = 0.4629$

Propulsive efficiency

$$\eta_{p \text{ IE}} = \frac{2 * V_0 * \text{ST}_{\text{IE}}}{(1 + f_B) * V_{9e}^2 - V_0^2}$$

 $etha_p_{IE} = 0.4358$

Overall efficiency

$$\eta_{o \text{ IE}} = \frac{V_0 * \text{ST}_{\text{IE}}}{f_B * \text{FHV}} = \eta_{\text{th IE}} * \eta_{p \text{ IE}}$$

etha_o_IE = 0.2017

FULL PRESSURE PRESSURE EXPANSION IN THE PROPELLING NOZZLE vs INCOMPLETE PRESSURE EXPANSION - PERFORMANCE COMPARISON

Tabela = 11×4 table

	Parameter	Unit	FULL EXP.	INCOMPLETE EXP.
1	'T9'	'K'	615.9567	927.8599
2	'V9'	'm/s'	1.0425e+03	598.0558
3	'P9'	'kPa'	22	114.6947
4	'T9e'	'K'	615.9567	685.6451
5	'V9e'	'm/s'	1.0425e+03	961.6779
6	'Thrust'	'kN'	15.9926	14.3410
7	'Specific Thrust'	'N*s/kg'	799.6289	717.0502
8	'Specific fuel	'kg/N/h'	0.0989	0.1103
9	'therm. effici	'_'	0.5505	0.4629
10	'prop. efficiency'	'_'	0.4087	0.4358
11	'overall effic	'_'	0.2250	0.2017

Temperature, pressure vs engine sections plot

Temperature - entropy plot

Entropy growth 9-9e

$$\Delta s_{9-9e} = c_{\rm pt} * \ln \frac{T_{9e}}{T_{9\,\rm IE}} - R_t * \ln \frac{P_{9e}}{P_{9\,\rm IE}}$$

deltaS_9_9e = 124.9080

CONCLUSIONS:

Incomplete expansion in the engine propelling nozzle causes:

- Lower thrust and specific thrust than it is in full decompression mode
- Higher specific fuel consumption
- Additional entropy increas caused by jet decompression outside the nozzle