
REAL TURBOJET WITH AFTERBURNER

Robert Jakubowski PhD Rzeszow University of Technology Aerospace Engineering Department robert.jakubowski@prz.edu.pl

LITERATURE:

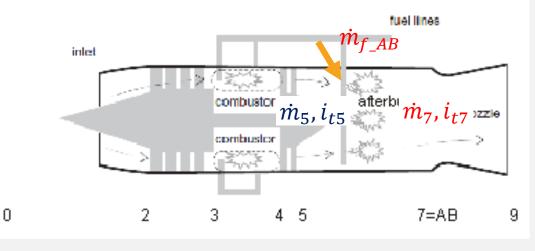
- Jack D. Mattingly, Elements of Propulsion: Gas Turbines and Rockets, AIAA Education Series 2006 (Chapter 7)
- Jack D. Mattingly, Elements of Gas Turbine Propulsion, Tata McGraw Hill Education Private Limited, 2013 (Chapter 7)
- Gordon C. Oates, Aerothermodynamics of Gas Turbine and Rocket Propulsion, AIAA Education Series, 1997 (Chapter 7)

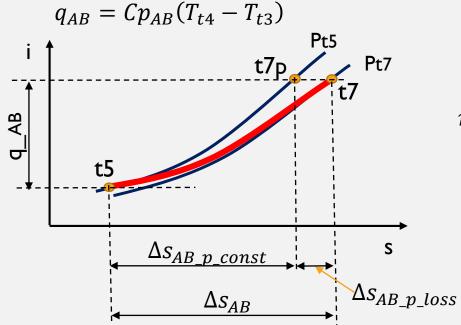
TURBOJET ENGINE WITH AFTERBURNER

AB on

- Temperature in section 7(AB) increases and by this in section 9
- Pressure in section 7(AB) slightly goes down due to additional pressure losses caused by burning process in the afterburner
- Engine outlet gas velocity increases by higher outlet gas temperature
- Outlet gas density goes down by temperature rise, therefore the outlet area should grow when AB is on (will be shown)

THTUST


$$T_{AB} = \dot{m}_{9_AB} V_{9_AB} + A_{9_AB} (P_{9_AB} - P_a) - \dot{m}_0 V_0 = \dot{m}_{9_AB} V_{eff_AB} - \dot{m}_0 V_0$$


$$\dot{m}_{9_AB} = \dot{m}_0 + \dot{m}_f \qquad \dot{m}_f = \dot{m}_{f_B} + \dot{m}_{f_AB}$$

SPECIFIC FUEL CONSUMPTION

$$SCF_{AB} = \dot{m}_f / T_{AB}$$

AFTERBURNER

Energy balance:

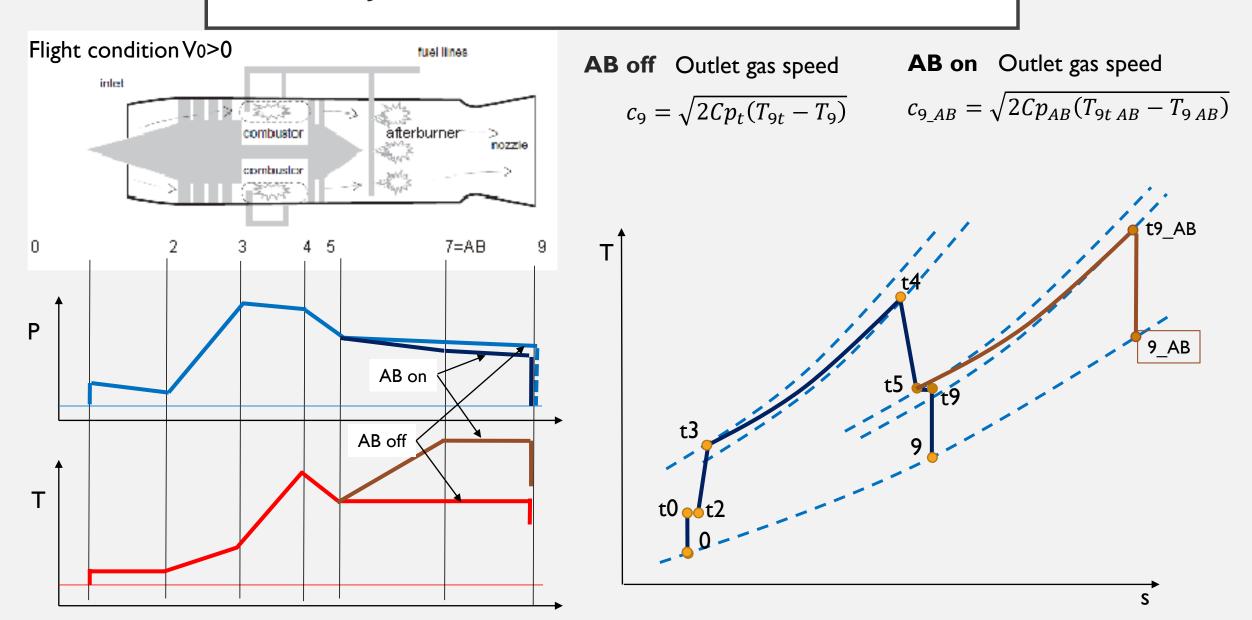
$$\eta_{AB}\dot{m}_{f_AB}FHV = \dot{m}_7 i_{t7} - \dot{m}_5 i_{t5} = \dot{m}_7 C p_{AB} T_{t7} - \dot{m}_5 C p_T T_{t5}$$

Afterburner efficiency

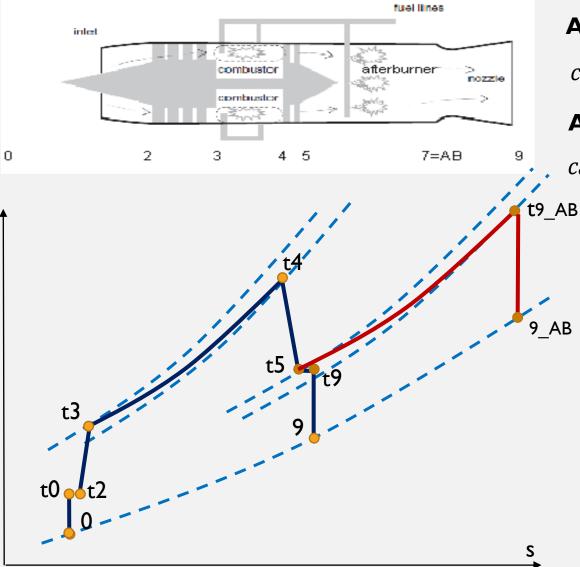
 $\eta_{AB} = \frac{heat \ added \ to \ the \ gas \ flow \ through \ the \ after burner}{heat \ contained \ in \ fuel \ suplied \ to \ after burner}$

$$\eta_{AB}\dot{m}_{f_AB}FHV = \dot{m}_5Cp_{AB}(T_{tAB} - T_{t5})$$

Afterburner fuel mass flowAfterburner fuel-air ratio
$$\dot{m}_{f_AB} = \frac{\dot{m}_5 C p_{AB} (T_{tAB} - T_{t5})}{\eta_{AB} F H V}$$
 $f_{AB} = \frac{\dot{m}_{f_AB}}{\dot{m}_0} = \frac{C p_{AB} (1 + f_B) (T_{t4} - T_{t3})}{\eta_B F H V}$


Pressure losses: $\pi_{AB} = \frac{P_{t7}}{P_{t5}}$

Additional pressure losses for AB ON are caused by burning process,


Entropy increase in the afterburner:

$$\Delta s_{AB} = c p_{AB} ln \frac{T_{tAB}}{T_{t5}} - R_{AB} ln \frac{P_{t7}}{P_{t5}}$$

TURBOJET ENGINE WITH AFTERBURNER

AB_ON – AB_OFF OUTLET GAS VELOCITY

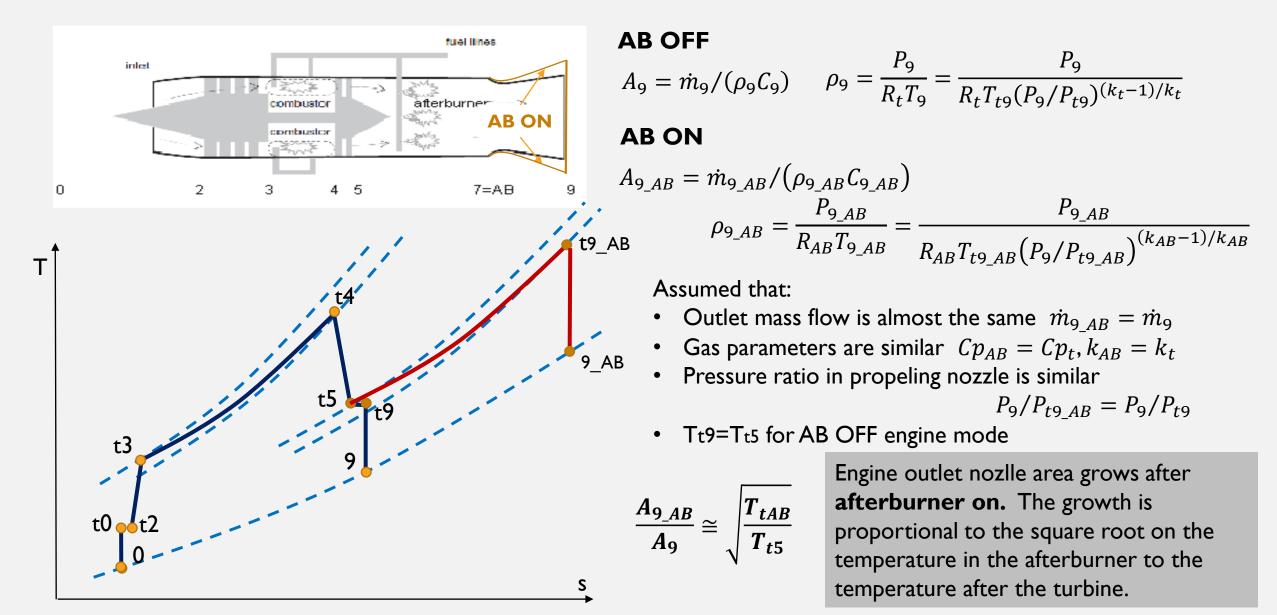
Т

AB OFF

$$c_9 = \sqrt{2Cp_t(T_{t9} - T_9)}$$
 $c_9 = \sqrt{2Cp_tT_{t9}(1 - (P_9/P_{t9})^{(k_t - 1)/k_t})}$
AB ON
 $c_{9_AB} = \sqrt{2Cp_{AB}(T_{9t AB} - T_{9 AB})}$
AB
 $c_{9_AB} = \sqrt{2Cp_{AB}(T_{9t AB} - T_{9 AB})}$

For assumption that:

 $\underline{C_{9}AB}$


• Gas parameters are similar $Cp_{AB} = Cp_t$, $k_{AB} = k_t$

• Pressure ratio in propeling nozzle is similar

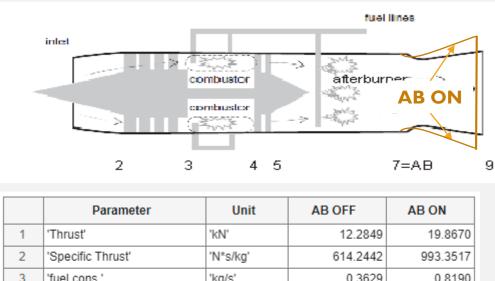
 $P_9/P_{t9_AB} = P_9/P_{t9}$

Engine outlet gas speed grow after **afterburner on** is proportional to the square root from the temperature in the afterburner to the temperature after the turbine.

AB_ON – AB_OFF OUTLET NOZZLE EXIT AREA

AFTERBURNER

EXAMPLE OF AFTERBURNER TURBOJET ENGINE CALCULATION


Given:		Parameter	Value
1		'Ambient temperature [K]'	217
	2	'Ambient pressure [kPa]'	22
3		'Flight speed'	1.5000
	4	'air mass flow [kg/s]'	20
	5	'CPR'	15
	6	'TIT [K]'	1400
	7	'TAB [K]'	1750
		'Inlet pressure losses'	0.9500
		'Burner pressure losses'	0.9800
	10	'AB OFF pressure losses'	0.9750
	11	'AB ON pressure losses'	0.9500
	12	'Nozzle pressure losses'	0.9700
	13	'compressor efficiency'	0.8200
	14	'turbine efficiency'	0.8900
	15	'Burner efficiency'	0.9800
	16	'Afterburner efficiency'	0.9500
	17	'Mechanical efficiency'	0.9900

Nozzle exit area for AB ON/OFF

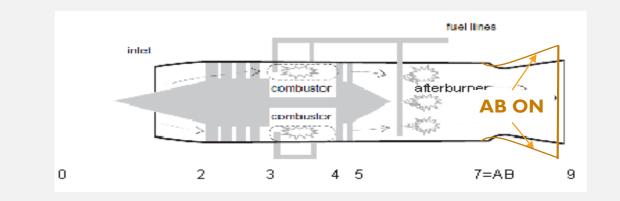
A9AB_A9_app = $\sqrt{\frac{T_{tAB}}{T_{t5}}}$

	Description		param	value	relative error	
-	1	'Exact method'	'A9AB_A9'	1.4296	0	
	2	'Aproximate method'	'A9AB_A9_app'	1.3111	-0.0829	

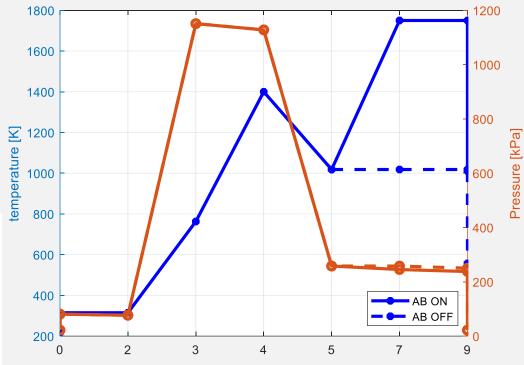
Afterburrner ON vs. OFF performance comparison

'fuel cons.' 'kg/s' 0.8190 3 0.3629 'Specific fuel consump' 'kg/N/h' 0.1064 0.1484 4 2 'therm. efficiency' 0.5070 5 0.5777 9 'prop. efficiency' 6 0.6036 0.3047 'overall efficiency' 5 0.1545 0.3487

For Afterburner on:


0

- Thrust and Specific thrust grow about 60%
- SFC grows about 50%
- engine exit area grows about 40%, caclation with simplified formula gives 8% lower


result

EXAMPLE OF AFTERBURNER TURBOJET ENGINE CALCULATION

Temperature and pressure comparison in engine cutsections:

	Section	Temp. [K] AB_OFF	Temp. [K] AB_ON	Pressure [kPa] AB_OFF	Pressure [kPa] AB_ON
1	'0'	217	217	22	22
2	't0'	315	315	81	81
3	't2'	315	315	77	77
4	't3'	763	763	1151	1151
5	't4'	1400	1400	1128	1128
6	't5'	1018	1018	258	258
7	't7'	1018	1750	252	245
8	't9'	1018	1750	244	238
9	'9'	560	1010	22	22

THANKS FOR YOUR ATENTION

 Questions and Comments ?

 1.

 2.

 3.